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Abstract 

We construct a deep learning model to test whether AI can learn from visual depictions 
of earnings and earnings quality. Quarterly earnings series are transformed into bar-
chart images, with bar height representing earnings levels and shading reflecting 
earnings quality. To avoid look-ahead bias, the model is trained from scratch on corpora 
excluding references to prior return-prediction research. The model predicts post-
earnings announcement returns out-of-sample, with accuracy improving substantially 
when shading incorporates earnings quality. Predictions based on visualized earnings 
also outperform trend-detectable models such as Long Short-Term Memory (LSTM) 
and Temporal Fusion Transformers (TFT). The predictive power of the unshaded model 
is largely explained by standardized unexpected earnings (SUE) and earnings 
acceleration, while the shaded model’s ability, though partly related to SUE and gross 
profitability, remains largely unexplained. Overall, we show that visual depictions of 
earnings and earnings quality forecast returns beyond established prediction models, 
highlighting the value of combining accounting insights with AI-driven visualization.    
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“If I can’t picture it, I can’t understand it.” –Albert Einstein 

 

1  Introduction 

Human brains process visual information more quickly than textual or numerical 

data, often interpreting visual stimuli instantaneously. Tools like graphs, charts, and 

infographics distill complex information into easily digestible formats, revealing 

patterns that may remain hidden in tables or raw numbers. The importance of 

visualization in financial reporting was highlighted by former SEC Chairman 

Christopher Cox, who remarked that “the visual presentation of information is such a 

key element of making disclosure understandable to investors” (SEC, 2007). Reflecting 

this advantage, financial disclosures increasingly incorporate visual elements to 

improve accessibility and engagement for diverse stakeholders, particularly investors. 

Recent research underscores this trend. For example, Christensen et al. [2024] 

document a significant increase in the use of visuals and infographics in 10-K filings, 

signaling a shift toward visual communication in financial reporting. Similarly, 

Nekrasov et al. [2021] demonstrate that earnings announcements enhanced with visuals 

attract greater investor attention, as evidenced by higher engagement metrics such as 

retweet volumes on platforms like Twitter. 

Simultaneously, advancements in AI and machine learning have introduced 

powerful tools for analyzing and interpreting financial statements. Recent research 

illustrates the usefulness of AI in this regard: Brown et al. [2020] employ a Bayesian 

topic-model algorithm to link specific topics in 10-K filings to financial misreporting 

risks; Bao et al. [2020] develop a machine learning model that predicts fraud using raw 

financial data; Chen et al [2022] apply machine learning to a detailed set of financial 

data to predict one-year ahead earnings changes; and Kim, Muhn, and Nikolaev [2024], 
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demonstrate that a large language model (LLM) can analyze income statements and 

balance sheets without accompanying text and outperform analysts in predicting 

earnings changes. While these studies provide compelling evidence of the usefulness 

of AI at interpreting textual or numerical accounting data, the potential for analyzing 

visualized accounting data remains largely unexplored. 

Building on these developments, we investigate whether a trained AI model can 

extract features from visualized earnings data that are predictive of post-earnings 

announcement drift. Importantly, we assess whether the integration of accounting 

domain knowledge into the construction of these visualizations enhances the model’s 

predictive performance. Specifically, we transform firms’ historical quarterly earnings 

into bar charts and employ a convolutional neural network (CNN), which is a deep 

learning algorithm inspired by the human visual system, to extract predictive features.1  

We begin by plotting earnings. For each firm announcing quarterly earnings from 

a 20-year in-sample period (1974Q1 to 1993Q4), we plot its most recent eight quarterly 

earnings in a black-and-white bar chart that visualizes the magnitude as well as the sign 

of the earnings.2 Next, each earnings bar chart image is paired with one of the three 

labels (“sell”, “hold”, or “buy”) based on the relative performance of the firm’s 63-day 

post-announcement buy-and-hold abnormal returns among the cross-section of 

announcing firms in the same quarter. We train CNN on these in-sample earnings 

images for it to learn features that best distinguish between the three assigned labels. 

We then create out-of-sample earnings images from 1994Q2 onward, and apply 

the CNN trained model to generate the CNN buy probability (CNNBP), which can be 

 
1A unique feature of CNN is its use of two-dimensional convolutional filters to scan images, enabling 

the model to capture fine details and progressively learn the relationship between an image and its 
corresponding label. 

2Earnings bars are in white, while the background is in black. We plot raw earnings figures rather 
than standardized unexpected earnings, as this approach better reflects the types of figures that firms 
typically showcase during their earnings calls. The plots are standardized and scaled so that the actual 
level of earnings is not discernible across different firms. See section 2 for details. 
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thought of as the CNN-predicted likelihood for an image to be a “buy” when “sell” and 

“hold” options are also available.3 We assign firms announcing earnings into decile 

portfolios based on CNN buy, where the cutoffs are based on the previous quarter 

distribution of CNN buy. Each decile portfolio has an average post-earning 

announcement return (cumulated over t+2 through t+64), averaged across all the firms 

in that decile (that quarter). The key dependent variable for our analyses is then the 

high-minus-low hedge portfolio (decile 10 minus decile 1) return. We find that the high-

minus-low hedge portfolio sorted on the CNN buy probability earns positive and highly 

significant post-announcement returns.  

To ascertain the relative contribution of visualization compared to simple 

machine-interpretation of earnings numbers, we compare the CNN hedge portfolio 

returns to a pair of well-accepted machine-learning-constructed (using strictly numbers) 

hedge portfolios. The comparison techniques, used to construct buy probabilities for 

two trend-detectable AI models, are LSTM and TFT, both of which use raw earnings as 

inputs. We find that the hedge portfolio returns based on CNNBP are significantly larger 

than those based on LSTM and TFT. These results remain robust across various 

benchmarks for expected returns (i.e. various measures for buy-and-hold abnormal 

returns).4 This highlights the advantage of using visualized earnings data in AI-based 

drift prediction.  

Thus far our results, though applied to drift as a unique anomaly, are still consistent 

with the benefits of visualization in predicting stock returns generally (e.g. Jiang et al. 

(2023) and Murray et al. (2024)). To augment our contribution, particularly to the 

 
3We apply the trained CNN to earnings images from 1994Q2 onward to guard against look-ahead 

bias. See section 2 for details. 
4We use the market-adjusted buy-and-hold returns, the size-adjusted buy-and-hold returns, and the 

buy-and-hold returns adjusted by factor models including the Fama-French four- and six-factor models 
(Fama and French [1993], Carhart [1997], Fama and French [2015], Fama and French [2018]), the q5-
model (Hou et al. [2015], Hou et al. [2021]), and the risk-and-behavioral model (Daniel et al. [2020]). 
See Table 2 and the Appendix for more details. 
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accounting literature, we next use accounting domain knowledge to create earnings bar 

charts that also reflect the quality of the reported earnings. Since earnings of high (low) 

quality convey information more (less) accurately about a firm’s underlying economic 

activity, we conjecture that CNN’s drift-predictive performance will be improved when 

it is being trained on earnings bar charts enriched with earnings quality.  

According to prior studies (e.g., Sloan [1996]; Dechow and Dichev [2002]; 

Penman and Zhang [2002]; Dechow and Schrand [2004]; Dechow et al. [2010]; Dichev 

et al. [2013]), quality earnings should be persistent, be supported by cash flows, and 

reliably predict future earnings. Hence, we employ three summary measures of the 

quality of earnings: CFO (cash flow from continuing operations), IBCA (adjusted 

income before extraordinary items), and OE (Dechow-Dichev operating earnings, 

where all are scaled by lagged assets. Specifically, earnings corroborated by strong 

operating cash flows (high CFO) as well as earnings free from transient items (high 

IBCA and OE) are regarded as higher quality. To incorporate earnings quality into the 

earnings bar charts, we adjust their shading (greyscale) by assigning lighter shades to 

bars representing higher-quality earnings and darker shades to those representing lower-

quality earnings. CNN taking these shaded earnings images as inputs is hereafter 

referred to as CNN+. 

We separately train each of the three CNN+ using a 20-year in-sample period 

starting from 1990Q1. 5  Then, we create out-of-sample earnings images for firms 

announcing earnings starting from 2010Q2 onward and whose 10-K/10-Q filing is 

released no later than one day after earnings announcement date. The additional filter 

is introduced to ensure that all information required to plot new earnings bar charts is 

available prior to making out-of-sample predictions, and thus there is no look-ahead 

 
5 We require statement of cash flows data to differentiate earnings quality, which provides the accrual 
and cash components of earnings. This data broadly became available from 1988 onward. Because of 
the requirement of 8 quarters for our charts, the analysis using the quality shading begins in 1990Q1. 
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bias. Finally, we apply the trained CNN+ to these new shaded earnings images, to 

generate the CNN+ buy probability (CNNBP+).  

To assess whether the integration of additional accounting domain knowledge into 

earnings bar charts enhances the model’s ability to capture drift-predictive features, we 

compare the post-earnings announcement drift forecasting performance of CNNBP+ 

with that of CNNBP. To have a fair comparison, we train a CNN model using the same 

setup as the CNN+ model, so that the only difference between the CNN model and the 

CNN+ model lies in the construction of earnings bar charts. We find that the hedge 

portfolios based on the CNN buy probability yield quarterly returns ranging from 2.1% 

to 2.5% on average, depending on different risk-adjustments (i.e. benchmark expected 

returns). In contrast, the average hedge portfolio returns based on the CNN+ buy 

probability are significantly larger, ranging from 3.9% to 4.4%, 2.9% to 3.6%, and 3.0% 

to 3.6% in a quarter, when CFO, IBCA, and OE are used as the earnings quality measure, 

respectively. These findings provide strong support for the outperformance of the 

CNN+ model relative to the CNN model. 

We then turn to exploration of the drivers of the return predictability of the CNN 

and CNN+ buy probabilities. To begin, we ask if predictability of them persists after 

controlling for known determinants of post-earnings announcement drift. Specifically, 

we estimate Fama and Macbeth [1973] regressions of post-announcement Fama-French 

five-factor and momentum-adjusted buy-and-hold returns on either the CNN or CNN+ 

buy probability, along with 13 variables. 6  Our results show that the CNN+ buy 

 
6 These “controls” include: standardized unexpected earnings (Ball and Brown [1968], Bernard and 
Thomas [1989], Foster et al. [1984]); earnings acceleration (He and Narayanamoorthy [2020]); trend in 
gross profitability (Akbas et al. [2017]); market capitalization (Fama and French [1992], [1993]); book-
to-market ratio (Fama and French [1992], [1993]); pre-announcement return (Carhart [1997]); earnings 
persistence (Francis et al. [2004]); earnings volatility (Cao and Narayanamoorthy [2012]); gross 
profitability (Novy-Marx [2013]); operating profitability (Ball et al. [2016]); operating accruals (Sloan 
[1996], Hribar and Collins [2002]); total accruals (Richardson et al. [2005]); and asset growth (Cooper 
et al. [2008]). 
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probability that uses accounting domain knowledge to indicate earnings quality, 

provides incremental predictability for post-earnings announcement drift beyond the 13 

variables, whereas the baseline CNN buy probability does not. In short, accounting 

domain expertise is particularly valuable within the context of machine learning 

visualization tools to predict post-earnings announcement drift. 

 What does this imply about CNN(+)’s visual learning, and how much of it is 

related to these factors vs independent of them? To explore which of these extant drift-

predictive features are utilized by CNN and CNN+, we employ the decomposition 

methodology of Hou and Loh [2016]. Applying their 3-step process to our setting 

allows to estimate the fraction of CNNBP’s (CNNBP+’s) drift predictability that is 

attributable to either an extant-explainer of drift, or a residual. In short, each of the 13 

typical explainers of drift is assessed (independently) as a potential driver of the 

CNNBP(+) relationship with drift in our sample. The residual in each assessment 

captures the fraction that remains unexplained. We find that standardized unexpected 

earnings (SUE) explains 63.8% of CNNBP’s return predictability, followed by earnings 

acceleration (EA) at 37.1%. SUE and EA also contribute to the drift predictability of 

three versions of CNNBP+, ranging from 31.4% to 37.3% and from 14.1% to 20.2%, 

respectively.  

More importantly, the Hou and Lo [2016] methodology can be applied in a 

multivariate setting. When we include all 13 (extant drift-explaining) variables in their 

framework, we can evaluate the marginal contribution of each candidate variable and 

the total fraction of the CNNBP’s (or CNNBP+’s) drift predictability by these variables 

collectively. We find that SUE and EA continue to be the main contributors to the drift 

predictability of CNNBP, and only 14.6% of the return predictability of CNNBP is left 

unexplained by the 13 variables. On the other hand, SUE and gross profitability (GP) 

are the primary explanatory variables for the CNNBP+’s return predictability, but the 



 8 

fraction of the drift predictability of CNNBP+ left unexplained is large (ranging from 

41.8% to 60.6%) and statistically significant at the 1% level. In other words, when we 

incorporate accounting domain expertise to adjust the earnings bar charts to reflect 

earnings quality, we uncover substantial predictive information that has not been 

previously shown to explain post-earnings announcement drift. 

Our study makes several contributions to the literature. First, we add to a growing 

literature studying the applications of machine learning techniques in financial 

statement analysis (e.g., Brown et al. [2020], Bao et al. [2020] Chen et al. [2022], Kim 

et al. [2024]) and returns prediction (Rapach et al. [2013], Kelly et al. [2019], Feng et 

al. [2020], Freyberger et al. [2020], Kozak et al. [2020], Gu et al. [2020], Gu et al. 

[2021], Leippold et al. [2022], Cao et al. [2024], Chen et al. [2024], Murray et al. 

[2024]). The key differentiating feature of our approach from the above studies is that 

our input focuses on how machine learning can use visual representations of earnings, 

as well as accounting knowledge, to predict post-earnings announcement drift.  

Second, we contribute to two strands of emerging literature studying visualized 

accounting data. The first strand of literature investigates why firms present visualized 

data in their disclosures more often, and how such visuals are interpreted by investors. 

For example, Christensen et al. [2024] document a significant increase in the disclosure 

of infographics in 10-K filings over time and investigate the relation between the use 

of infographics and uncertainty in capital markets. Nekrasov et al. [2022] find that 

visuals in firms’ Twitter earnings announcements are associated with more retweets, 

representing increased attention to the earnings news. Moss [2022] finds that retail 

investors use their visual perception of earnings surprise displayed on Robinhood rather 

than the unexpected earnings scaled by stock price in their investment decisions. The 

second strand of literature examines whether one can extract useful information from 

these visualized data. For example, Hu and Ma [2024] quantify persuasion in visual, 
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vocal, and verbal dimensions in start-up pitch videos, and find that passionate and warm 

pitches significantly increase funding probability. Cao et al. [2024] examine the value 

of visual information provided in corporate executive presentations and use AI to 

categorize the types of charts presented as forward looking or summarizing and 

examine how market participants respond to such information. Gu et al. [2023] find 

that a daily firm-level investor sentiment measure based on graphics interchange format 

images (GIFs) in postings about firms on Stocktwits.com is positively correlated with 

same-day stock returns while predicting stock return reversals in the following two 

weeks. 

Our paper differs from the existing literature in two key aspects. First, instead of 

analyzing pre-existing visualized accounting data, we propose a universal, ground-up 

approach to visualize a firm’s time-series of quarterly earnings into a bar-chart image, 

and train AI on these earnings images to examine whether it can extract relevant 

information for predicting post-earnings announcement drift. Second, while most 

studies show how AI outperforms humans in extracting information to make predictions 

(one notable exception is Cao et al. [2024], who show that the integration of analyst 

and machine learning intelligence results in improved stock return predictions), we 

highlight humans’ relative advantages by leveraging accounting domain knowledge to 

create “informative” earnings images, aiming to enhance the AI’s learning outcomes. 

Specifically, we embed earnings quality (EQ) information through variation in bar 

shading based on established EQ measures in the literature. Notably, we train AI on 

these shaded earnings bar-chart images to automatically learn associations between the 

visuals and post-announcement return labels, without telling the AI that height 

corresponds to earnings and that shading reflects EQ. Then, we show that AI trained on 

earnings images shaded with EQ significantly outperforms AI trained on unshaded 

earnings images in predicting post-earnings announcement drift. We believe that the 
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integration of domain expertise—specifically, the understanding that earnings quality 

influences investor reactions and how one can reliably measure it—with a visual 

technique that allows AI to capture this information, adds a novel contribution to the 

literature. 

Last, we contribute to a burgeoning literature employing CNN to make predictions. 

For example, Obaid and Pukthuanthong [2022] extract information from a large sample 

of news media images and translate that information into a daily investor sentiment 

index. Jiang et al. [2023] extract return-predicting information from stock-level charts 

depicting daily open, close, high, and low prices, as well as trading volume and average 

prices over a past period, to forecast future returns. Murray et al. [2024] show that a 

one-dimensional CNN trained on historical returns can strongly predict the cross-

section of future stock returns. Our work differs in two ways. First, we focus on 

predicting the post-earnings announcement drift as opposed to daily or monthly returns. 

Second, although previous studies explore whether the return predictability of CNN-

based signals is subsumed by certain variables, they do not quantify the contributions 

of these variables. In contrast, we apply an econometric framework that allows us to 

assess both the magnitude and statistical significance of the extent to which the drift 

predictability based on CNN predictions can be attributed to known drift predictors and 

return anomalies in the PEAD literature. In addition, this methodology allows us to 

shed light on how incorporating human knowledge enhances the ability of CNN models 

to explain post-earnings announcement drift. 

2.  Visualizing Earnings, Training, and Prediction 

In this section, we introduce the CNN training procedure, which can be thought of 

as an image classification task. First, for firms announcing earnings in the in-sample 

period (1974Q1 to 1993Q4), we transform their time series of earnings into bar charts, 
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and assign one of the three labels (i.e., “sell”, “hold”, or “buy”) to each earnings bar-

chart image based on the relative performance of its post-earnings announcement 

returns among the cross-section of firms in the same quarter. Next, we train CNN to 

“learn” the relationship between these earnings bar-chart images and their assigned 

labels. Lastly, we create earnings bar-chart images for firms announcing earnings from 

1994Q2 onward and employ the trained CNN to generate the probability for these 

images to be classified as a “buy”. 

2.1 Plotting earnings images and assigning labels 

2.1. Plotting earning images 

We begin by plotting the most recent eight quarterly earnings in bar charts. Our 

intent was to create a simple chart that would be roughly analogous to what might be 

presented in earnings conference call.  For example, Figure 1, panel A provides a slide 

from Meta’s 2024 Q3 earnings call where they display nine quarters of past earnings.  

Rather than have the CNN attempt to classify the variety of earnings images generated 

by firms, we provide a set of standardized charts for the CNN to train on and process.  

Following Jiang et al. [2023], we generate black-and-white rather than colored images 

for simplicity and uniformity. Each black-and-white image is of size 24 × 24 pixels, 

which is recognized by the machine as a 24 × 24 matrix of 0 (black pixel) and 255 

(white pixel). We use black as the background color and white as the color for earnings, 

and the constant image size setup is for better comparison of earnings patterns across 

different firms in different quarters. Figure 1, Panel B provides an example of Meta’s 

2024 Q3 earnings in our standardized format. 

Each quarter occupies 24 × 3 pixels in the image, and quarterly earnings are plotted 

as “white bars” in the middle column of each quarter. Based on the signs of the most 
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recent eight quarterly earnings, we categorize the earnings images into three types: Type 

1, where all quarterly earnings are non-negative; Type 2, where the maximum quarterly 

earnings is positive and the minimum quarterly earnings is negative; and Type 3, where 

all quarterly earnings are non-positive. Figure 2 shows Images 1, 2, and 3 as 

representative examples of Types 1, 2, and 3 earnings images, respectively. In Appendix 

A, we describe the details of plotting earnings images. For each firm announcing 

earnings in a given quarter q during the in-sample period (1974Q1-1993Q4), we create 

its earnings image using the firm’s earnings in the most recent eight quarters (quarters 

q-7 to q). 

2.1.2 Assigning labels to earnings images 

Next, we assign each earnings image a label indicative of the firm’s post-

announcement return performance. Specifically, we sort firms announcing earnings in 

the same quarter into terciles based on their 63-day post-announcement market-adjusted 

buy-and-hold returns (MAR).7 An earnings image is labeled as “sell,” “hold,” or “buy” 

if its MAR falls into the bottom, middle, or top tercile, respectively. Since the number 

of training images for each label is about the same, we mitigate the class imbalance 

issue in CNN training that arises with a disproportionate ratio of labels. 

In particular, MAR𝑖𝑖,𝑞𝑞+1  is defined as the difference between the buy-and-hold 

return of firm 𝑖𝑖  and that of the CRSP value-weighted market portfolio over the 

windows [+2, +64] in trading days relative to firm 𝑖𝑖’s earnings announcement date 𝑡𝑡 

in quarter 𝑞𝑞: 

 
7  In untabulated tests, we find that the final CNN out-of-sample performance is robust to using 

alternative definitions of abnormal returns such as size-adjusted or factor-adjusted returns in the label-
assigning process. 
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MAR𝑖𝑖,𝑞𝑞+1 = � �1 + 𝑅𝑅𝑖𝑖,𝑘𝑘�
𝑡𝑡+64

𝑘𝑘=𝑡𝑡+2

− � �1 + 𝑅𝑅𝑀𝑀,𝑘𝑘�
𝑡𝑡+64

𝑘𝑘=𝑡𝑡+2

  , (1) 

where 𝑅𝑅𝑖𝑖 is the delisting-adjusted return of firm 𝑖𝑖, 𝑅𝑅𝑀𝑀 is the return of the CRSP 

value-weighted market return, and 𝑡𝑡  is quarter 𝑞𝑞 ’s announcement date of firm 𝑖𝑖 .8 

The 63-day holding window corresponds to the total number of trading days in three 

months. We follow previous studies (Vega [2006], Engelberg et al. [2012], Frank and 

Sanati [2018]) to compute MAR from day 2 to mitigate the impact of bid-ask bounce 

and other market microstructure effects, and our results are robust to MAR defined 

using the trading window of [+1, +63]. 

2.2 Training the CNN 

Next, we train CNN on these earnings images (along with their assigned labels). 

We use three CNN building blocks, with the first block consisting of 64 convolutional 

filters of 7 × 7 pixels, the second block consisting of 128 convolutional filters of 3 × 3 

pixels, and the third block consisting of 256 convolutional filters of 3 ×3 pixels. During 

training, we follow the CNN literature to use the cross-entropy loss function as the loss 

function for minimization, randomly select 70% earnings images for training and the 

other 30% for validation, and adopt similar regularization procedures in Gu et al. [2020] 

and Jiang et al. [2023] to prevent overfitting.9 To conserve space, we report the detailed 

model architecture and training process in the Internet Appendix.  

Note that the CNN is trained on historical earnings images with assigned return 

labels between 1974Q1 to 1993Q4, which requires return information between 1974Q1 

 
8  We replace missing delisting-adjusted returns with market returns, which is equivalent to 

reinvesting any remaining proceeds in the market portfolio until the end of the holding period. 
9We describe the modeling choices in the Internet Appendix. Interested readers may refer to Gu et al. 

[2020] for detailed explanations on those modeling choices.  
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to 1994Q1.10 In addition, since CNN training can yield different outcomes even when 

using the same architecture and dataset due to the stochastic nature of optimization 

algorithms and the application of dropout, we independently train the same CNN ten 

times (ensemble size = 10) and store their parameters for subsequent use. 

2.3 Applying the Trained CNN for Prediction 

Having trained the CNN on earnings images from the in-sample period, we apply the 

stored parameters that encapsulate the model’s learned knowledge of the relationship 

between an earnings image and its corresponding label to out-of-sample earnings 

images. The trained CNN can generate for each out-of-sample earnings image the 

probability of being classified as “buy”, our label of interest. We refer to this predicted 

likelihood as the CNN buy probability (CNNBP).  

 Next, for firm announcing earnings between 1994Q2 to 2023Q2, we create their 

earnings images using their most recent eight quarters’ earnings (quarters q-7 to q) and 

employ the trained CNN to generate CNNBP for these earnings images. Since the 

trained CNN is based on information through 1994Q1, we generate CNNBP for 

earnings images from 1994 Q2 onward to ensure that all predictions occur strictly after 

the training process. As a result, there is no forward-looking bias.11 In addition, for 

each out-of-sample earnings image, we average the CNNBP generated by the ten 

independently trained CNN, which helps achieve better accuracy and robustness. 

 

 
10Forming post-announcement 63-day return labels for earnings images in 1993Q4 requires return 

information in 1993Q4 and 1994Q1.  
11To avoid hindsight bias, when forming out-of-sample predictions on the 63-day ([+2, +64]) post-

announcement returns for a given firm announcing earnings in quarter q, one should only use information 
available up to one day after its earnings announcement date in quarter q. 
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3.  Data and Variables  

We focus on U.S. common stocks traded on NYSE, AMEX, and NASDAQ, and 

obtain data from Compustat and CRSP. First, we collect Compustat firm-quarters 

whose earnings announcement date (Compustat item RDQ) is between January 1974 

and June 2023 and delete observations with missing RDQ in the most recent eight 

quarters (quarters 𝑞𝑞 − 7  to 𝑞𝑞 ). Next, we apply filters in He and Narayanamoorthy 

[2020] to eliminate announcements that are potentially subject to data errors. In 

particular, we delete observations if in the most recent eight quarters, a firm has (i) more 

than one earnings announcement on any date (ii) earnings announcement date within 

30 days of a previous earnings announcement date, or (iii) earnings announcement 

either prior to or more than 180 days after the corresponding fiscal period-end. 

We require a firm to have non-missing earnings in the most recent eight quarters 

and a CRSP daily price higher than one dollar at the most recent earnings announcement 

date (quarter q). We use income before extraordinary items (Compustat item IBQ) as 

earnings. Financial and utility firms with SIC codes from 6000 to 6999 and from 4900 

to 4949 are excluded. In addition, firms are required to have non-missing market 

capitalization (SIZE) and non-negative book-to-market ratio (BM) and have at least 90 

non-missing daily return observations in the [−150, −31] window relative to the current 

quarter earnings announcement date. We are left with 403,880 firm-quarter 

observations after applying all the above filters. 

Next, we describe the in-sample dataset and the out-of-sample dataset. The in-

sample dataset is used for model training, and the out-of-sample dataset is used for 

testing the out-of-sample CNN performance. For Table 2, the in-sample dataset consists 

of 124,341 firm-quarter observations between 1974Q1 to 1993Q4, while the out-of-

sample dataset consists of 239,012 firm-quarter observations between 1994Q3 to 
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2023Q2 with non-missing firm characteristics. 12  For Tables 3 to 6, the in-sample 

dataset consists of 191,118 firm-quarter observations between 1990Q4 to 2009Q4, 

while the out-of-sample dataset consists of 43,734 firm-quarter observations between 

2010Q3 to 2023Q2 with non-missing firm characteristics and whose current quarter’s 

10-K/10-Q filing is released no later than one day after earnings announcement date to 

ensure the availability of other accounting data.  

Note that we impose a three-quarter lag between the end of the in-sample period 

and the start of the out-of-sample period. This is because for all empirical analyses 

throughout the paper we focus on the decile ranks of CNNBP, and we use the 

distribution of CNNBP in the previous quarter to determine the cutoff points. In other 

words, when the final quarter of the in-sample period is quarter q, we can generate 

CNNBP (CNNBP decile ranks) free from look-ahead bias for earnings images 

beginning in quarter q+2 (q+3). 

We summarize the definitions of all the variables used in this study, in Appendix 

B. To mitigate the impact of outliers, we transform most variables into decile ranks 

(numbered 0 to 9, from low to high) following prior research (e.g., Rangan and Sloan 

[1998], Livnat and Mendenhall [2006], Garfinkel and Sokobin [2006]).13 The cutoff 

points for quarterly variables are based on the distribution of these variables in the 

previous quarter, and the cutoff points for annual variables from July in year t to June 

in year t + 1 are based on the distribution of these variables at the end of June in year t. 

Then, we convert all the decile ranks to scaled ranks by dividing by 9 and subtracting 

0.5. The resulting scaled ranks vary from −0.5 to 0.5 with a mean of zero and a range 

 
12The firm characteristics include SUE, EA, TREND, PASTRET, PERSIST, VOL, GP, OP, OA, TA, 

and AG. Along with BM and SIZE, these firm characteristics are used as comparing/control variables 
throughout the paper. See Appendix B for variable definitions. 

13 Variables that are not transformed into decile ranks are the six measure of the 63-day post-
announcement buy-and-hold abnormal return (BHAR), including market-adjusted return (MAR), size-
adjusted return (SAR), and four factor-adjusted returns (FF4, FF6, HMXZ5, and DHS3). 
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of one. This variable transformation approach is to facilitate comparison of the 

economic magnitudes of firm characteristics. For example, the coefficient on a variable 

of interest (in scaled rank) in a return regression represents the return from a zero-

investment strategy of going long on the highest variable decile and short on the lowest 

variable decile. 

4. CNN Performance 

4.1 Portfolio Analysis 

If CNN is capable of detecting the features of earnings images that are indicative 

of post-earnings announcement performance, firms with higher CNN buy probability 

should outperform firms with lower CNN buy probability in post-earnings 

announcement returns. To test this hypothesis, we assign firms announcing earnings 

into decile portfolios based on their CNN buy probability, where the cutoffs are based 

on the distribution of the previous quarter’s CNN buy probability. This approach 

prevents hindsight bias from classifying firms into portfolios based on information not 

available at the time the strategy is implemented (Foster et al. [1984], Bernard and 

Thomas [1989]). Hence, while the CNN buy probability can be generated without 

hindsight bias starting from 1994Q2, our empirical analysis focuses on the period from 

1994Q3 onward, during which the CNN buy probability can be reliably transformed 

into decile ranks. 

Next, we compute the average difference in 63-day post-announcement MAR 

between firms in the highest CNN buy probability decile and firms in the lowest CNN 

buy probability decile and report the results in Table 2. Panel A indicates that the 

average difference in MAR is 3.5% (t-statistic = 6.990) in a quarter, which corresponds 

to an annualized return of 14%. To ensure that the results are robust to alternative risk 
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adjustments, we proceed to examine the average difference in size-adjusted (SAR) and 

factor-adjusted buy-and-hold returns between the highest and lowest CNN buy 

probability deciles.  

SAR is defined as the difference between the buy-and-hold return of an 

announcing firm and that of a size-matched portfolio over the 63-day window ([+2, 

+64]) following its earnings announcement date. We use the monthly NYSE size decile 

breakpoints at the end of June in year 𝑡𝑡 to determine the size-matched portfolio for a 

firm whose earnings announcement date is between July of year 𝑡𝑡 to June of year 𝑡𝑡 +

1. Monthly size breakpoints and daily size portfolio returns are obtained from Kenneth 

French’s website. 

To compute the 63-day factor-adjusted buy-and-hold returns, we replace 𝑅𝑅𝑀𝑀,𝑘𝑘 in 

equation (1) with daily return 𝑅𝑅𝐹𝐹,𝑘𝑘�  predicted by factor models. To compute 𝑅𝑅𝐹𝐹,𝑘𝑘� , we 

first estimate individual stock factor loadings by regressing returns on the factors on a 

120-day rolling window from 𝑡𝑡 − 150 to 𝑡𝑡 − 31 for each stock:  

 

𝑟𝑟𝑖𝑖,𝑡𝑡 = 𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑖𝑖
′𝐹𝐹𝑡𝑡 + 𝜖𝜖𝑖𝑖,𝑡𝑡, (2) 

 

where 𝑟𝑟𝑖𝑖,𝑡𝑡 is the excess return on stock 𝑖𝑖 and 𝐹𝐹𝑡𝑡 is a vector of factors. The predicted 

return 𝑅𝑅𝐹𝐹,𝑘𝑘�  is then computed as 𝛽𝛽′𝚤𝚤
�𝐹𝐹𝑘𝑘.14 In particular, we consider the factors in the 

Fama-French four- and six-factor models (Fama and French [1993], Carhart [1997], 

Fama and French [2015], Fama and French [2018]), the q5-model (Hou et al. [2015], 

Hou et al. [2021]), and the risk-and-behavioral model (Daniel et al. [2020]). The 63-

day factor-adjusted buy-and-hold returns following an earnings announcement of these 

models are denoted FF4, FF6, HMXZ5, and DHS3, respectively.15  

 
14See, for example, Savor [2012] and Kapadia and Zekhnini [2019]. 
15Fama and French [2015] extends the Fama-French three-factor model (Fama and French [1993]) 

to control for operating profitability (RMW) and investment (CMA). After the inclusion of a momentum 
factor (Carhart [1997]), we have Fama-French four-factor and six-factor models (Fama and French 
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 Returning to Table 2, the rest of columns in Panel A present qualitatively similar 

results: the average return differential between the highest and lowest CNN buy 

probability deciles in SAR or factor-adjusted buy-and-hold returns (FF4, FF6, HMXZ5, 

and DHS3) range from 3.1% to 3.5%, with t-statistics all statistically significant at the 

1% level. Overall, Panel A of Table 2 shows a significantly positive relation between 

CNN buy probability and post-announcement buy-and hold abnormal returns that are 

robust to various risk adjustments.16 

4.2 Comparison with Alternative Deep Learning Models 

While Panel A of Table 2 indicates that CNN exhibits decent return-predicting 

performance in the out-of-sample period, a natural question arises: what value is added 

by manually converting raw earnings into two-dimensional images? For example, one 

may consider using trend-detectable models such as Long Short-Term Memory (LSTM) 

or Temporal Fusion Transformers (TFT) to analyze the raw data directly, bypassing the 

need for humans to convert raw data into images. 

 To answer the question, we train LSTM and TFT with firms’ most recent eight 

quarterly earnings (along with the assigned “sell”, “hold”, or “buy” label) in the same 

in-sample period. Earnings are divided by lagged assets to enhance cross-sectional 

comparability. Then, for each of the three models we analogously generate “buy 

probability” for earnings images in the same out-of-sample period, form decile 

 
[2018]). Hou et al. [2015] propose the q-model to control for market, size (ME), investment (IVA), and 
profitability (return on equity, ROE), and Hou et al. [2021] further includes an expected growth factor 
(EG) into the q5-model. Daniel et al. [2020] propose a 3-factor risk-and-behavioral model that accounts 
for market, long-term financing (FIN), and short-term earnings surprise (PEAD). Fama-French factors 
are obtained from Kenneth French’s website, q5-model factors are obtained from Lu Zhang’s website, 
and DHS3 factors are obtained from Lin Sun’s website. 

16 The results are qualitatively the same if we assign earnings images with labels based on firms’ 
21-day or 42-day post-announcement market-adjusted buy-and-hold returns, train CNN on these images, 
and examine the 21-day or 42-day post-announcement buy-and-hold abnormal returns for CNN buy 
probability deciles. 
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portfolios accordingly, and report the average return differential in 63-day post-

announcement buy-and-hold abnormal returns between the highest and lowest buy 

probability deciles. We describe the modeling choices for both models in the Internet 

Appendix. 

Panels B and C report the results for LSTM and TFT, respectively. We find that 

the average return differences in post-announcement buy-and-hold abnormal returns 

are significantly positive, suggesting that both models can detect useful features from 

the time-series of earnings that are related to post-announcement performance. 

However, Panels D and E show that the average hedge returns based on CNN are 

significantly larger than those based on each of the three models in the out-of-sample 

period. The results suggest that CNN combined with image representation of historical 

earnings produces more information useful in prediction post-earnings announcement 

drift.  

5. Incorporating Accounting Knowledge into CNN 

5.1 Variation in Bar Charts Using Earnings Quality  

Results from the previous sections suggest that CNN outperforms alternative deep 

learning models in predicting post-earnings announcement drift. Next, we seek to 

leverage our domain expertise in accounting to create more informative visual 

representations of earnings images for the machine learning. We believe that the drift-

predicting power of CNN can be further enhanced when input bar charts are enriched 

with information that provides visual clues about the quality of the earnings bars that 

we graphed. Specifically, we expect that the hedge portfolio return sorted on CNNBP 

will be larger when input bar charts are constructed to not only reflect earnings levels, 

but also to reflect accounting-relevant information. 
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We incorporate the concept of earnings quality into the construction of earnings 

bar charts. While earnings provide information about an enterprise’s financial 

performance during a given period (Statement of Financial Accounting No.1), they do 

not, in isolation, convey anything about persistence or quality of the reported figures. 

According to the literature (e.g., Sloan [1996]; Dechow and Dichev [2002]; Penman 

and Zhang [2002]; Dechow and Schrand [2004]; Dechow et al. [2010]; Dichev et al. 

[2013]), high quality earnings accurately reflect a firm’s core business operations and 

tend to repeat themselves in the future. In other words, high-quality earnings should be 

backed by operating cash flows and serve as useful predictors of future earnings. 

Motivated by these prior studies, we consider the following three earnings quality 

measures (all scaled by lagged assets). The first earnings quality measure is cash flow 

from continuing operations (CFO), defined as cash flow from operating activities less 

cash flow from extraordinary items and discontinued operations (e.g. Sloan 1996).  

Earnings consist of an accrual and a cash flow component, and earnings are more likely 

to persist if they are backed by higher cash flows from continuing operations. By 

contrast, accruals are associated with lower persistence and deemed lower quality 

(Sloan [1996], Dichev et al. [2013]). As a result, higher CFO represents higher earnings 

quality.17  

The second and third earnings quality measures are two variables defined in Ball 

and Nikolaev [2022]: adjusted income before extraordinary items (IBCA) and Dechow-

Dichev operating earnings (OE), with higher values representing higher earnings 

quality. IBCA removes non-operating items (e.g., depreciation and amortization) that 

have no future operating cash flow equivalent from income before extraordinary items 

 
17 We tired several additional measures of quality to augment the earnings bars, including change in 
inventory, change in accounts receivable, special item accruals, an indicator for meet-or-beat, and 
changes in R&D spending. None of these measures significantly improved the CNN+ model’s ability to 
predict returns.  
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as reported in cash flow statements (IBCA), while OE is defined as the sum of operating 

cash flows and working capital accruals following Dechow and Dichev [2002]. The two 

variables can be viewed as the accruals-based earnings versions that remove transitory 

items and closely align with operating cash flows. Ball and Nikolaev [2022] find that 

both variables dominate operating cash flows in predicting future cash flows.  

We need to add variation in the bar charts that reflect earnings quality in addition 

to earnings numbers. We follow the previous approach to create earnings bar-chart 

images, but now fill each earnings bar with different shades of grey to signal the firm’s 

earnings quality in the given quarter. Specifically, we transform the earnings quality 

(i.e., CFO, IBCA, or OE) of a firm’s quarterly earnings into deciles, where the cutoff 

points are based on the distribution of these variables from the same quarter of the 

previous year.18 Quarterly earnings in the lowest earnings quality decile (decile 1) are 

filled with dark grey (pixel value = 26), while quarterly earnings in the highest earnings 

quality decile (decile 10) are filled with white (pixel value = 255). The pixel value 

alternately increases by 25 and 26 as the earnings decile increases. If a firm’s earnings 

quality cannot be computed in a given quarter due to missing data, we assign an 

earnings quality decile of 5.5. Its pixel value is set to 140, which is the midpoint 

between the pixel value of decile 5 (= 128) and the pixel value of decile 6 ( = 153). 

Panel A of Figure 3 presents the color used to fill each earnings bar-chart image 

for each earnings quality decile, with the pixel values being higher for higher earnings 

quality deciles. Panel B displays three example bar-chart images, based on the provided 

earnings and earnings quality deciles from the most recent eight quarters, with the most 

recent eight quarterly earnings of the three images being the same as those in Figure 2 

to foster comparison. We see that the new earnings bar-chart image with different 

 
18This better reflects the effect of the integral approach to quarterly reporting. See, for example, 

Rangan and Sloan [1998] and Collins and Hribar [2000].  
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shadings allows machines to “see” both the evolution of quarters earnings along with 

their earnings quality in a straightforward way. 

5.2 Model Performance: CNN vs. CNN+ 

In this section, we compare the drift-predicting performance of CNN based on 

original bar charts with that of CNN based on new bar charts incorporating earnings 

quality. To distinguish between the two, we refer to the latter as the “CNN+” model and 

denote the buy probability generated by CNN+ as the CNN+ buy probability 

(CNNBP+). 

 We separately train CNN and CNN+, using an in-sample period spanning from 

1990Q4 to 2009Q4. We begin the training period in 1990Q4 for the following reasons. 

First, the construction of the three earnings quality variables requires data from cash 

flow statements, which are largely unavailable prior to 1988Q1 in Compustat. Second, 

determining the cutoffs for earnings quality in quarter q requires the distribution of 

earnings quality in quarter q-4. As a result, 1989Q1 (four quarters after 1988Q1) is the 

first quarter for which earnings quality deciles can be established, and 1990Q4 (eight 

quarters after 1989Q1) is the first quarter in which we can construct shaded earnings 

bar charts. We follow the same model architecture and regularization procedures as 

those in Section 2.  

 In each quarter between 2010Q2 and 2023Q2, we create earnings images for firms 

announcing earnings and whose 10-K/10-Q filing is released no later than one day after 

earnings announcement date.19 We apply this filter to eliminate potential look-ahead 

bias because firms do not always release earnings announcements concurrently with 

 
19The in-sample training period is based on historical earnings images and labels between 1990Q4 

to 2009Q4, which were constructed using information available between 1990Q1 to 2010Q1. Hence, we 
start creating earnings images and making predictions from 2010Q2 onward.  
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their 10-Q/10-K filings. This procedure ensures that the new bar charts can be reliably 

constructed prior to generating out-of-sample predictions, as our post-announcement 

return accumulation period (i.e., [+2, +64]) commences two days after earnings 

announcement date. Finally, we apply the stored parameters of the previously trained 

CNN and CNN+ to these earnings images to generate CNN buy probability and CNN+ 

buy probability, respectively. 

5.2.1 Portfolio analysis 

We follow similar procedures in Section 4 to conduct portfolio analysis. we assign 

firms announcing earnings into decile portfolios based on their CNN buy probability 

and CNN+ buy probability, where the cutoffs are based on the distribution of the 

previous quarter’s CNN buy probability and CNN+ buy probability, respectively. Our 

out-of-sample portfolio analysis thus focuses on the period from 2010Q3 to 2023Q2, 

during which CNN buy probability and CNN+ buy probability can be reliably 

transformed into decile ranks. Then, we examine the average return differences in 63-

day post-announcement buy-and-hold abnormal returns between the highest and lowest 

CNN buy probability or CNN+ buy probability deciles. 

 Table 3 reports the results. Panel A shows that the average hedge portfolio returns 

based on the CNN buy probability range from 2.1% to 2.5% in a quarter depending on 

different risk-adjustments, with t-statistics all statistically significant at the 1% level. 

This result provides evidence on the drift-predicting performance of CNN. However, 

in Panels B to D we find that the average hedge portfolio returns based on the CNN+ 

buy probability are larger in magnitude, ranging from 3.9% to 4.4%, 2.9% to 3.6%, and 

3.0% to 3.6% in a quarter when using CFO, IBCA, and OE as the earnings quality 

measure, respectively. In Panels E to G, we confirm that the average differences in 
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hedge portfolio returns between portfolios sorted on CNN buy probability and those 

sorted on CNN+ buy probability are statistically significant.  

 Figure 4 depicts the hedge portfolio return (based on FF6) for each model over 

time during the out-of-sample period. First, we find that the hedge portfolio return is 

positive in 37, 45, 43, 44 out of the 52 quarters for CNN and CFO, IBCA, and OE 

versions of CNN+, respectively. In other words, after controlling for the market, size, 

value, profitability, investment, and momentum effect, firms in the highest CNNBP+ 

decile outperform those in the lowest CNNBP+ decile during the 63-day post-

announcement period in 82.7% to 86.5% of the quarters. In contrast, firms in the highest 

CNNBP decile outperform those in the lowest CNNBP decile in only 71.2% of the 

quarters. 

As a robustness check, we employ an alternative in-sample period from 1990Q4 

to 2014Q4 and an out-of-sample period from 2015Q3 to 2023Q2, perform the same 

portfolio analysis, and report the results in Table IA1 in the Internet Appendix. We find 

that the average hedge portfolio returns based on the CNN buy probability range from 

1.9% to 2.7%, while those based on the CNN+ buy probability generated by CFO, IBCA, 

and OE versions of the CNN+ model are significantly larger, ranging from 3.1% to 

4.0%, 3.9% to 4.9%, and 3.6% to 4.6%, respectively.20  

Overall, the findings provide encouraging evidence for the added value of 

accounting domain knowledge. 

5.2.2  Cross-sectional regressions 

We next perform a cross-sectional regression analysis to simultaneously control 

for the firm characteristics that may affect the positive relation between the CNN buy 

 
20Figure IA1 in the Internet Appendix depicts the hedge portfolio return (based on FF6) for each 

model over time during this out-of-sample period (2015Q3 to 2023Q2). 
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probability (or the CNN+ buy probability) and post-earnings announcement drift. We 

first consider three earnings attributes: standardized unexpected earnings (Ball and 

Brown [1968], Bernard and Thomas [1989], Foster et al. [1984]), earnings acceleration 

(He and Narayanamoorthy [2020]), and trend in gross profitability (Akbas et al. [2017]). 

Standardized unexpected earnings (SUE) is the earnings surprise based on a seasonal 

random walk model, earnings acceleration (EA) captures the change in earnings growth 

from one quarter to the next, and trend in gross profitability (TREND) characterizes the 

recent path in a firm’s profitability in addition to the profit level. 

In addition to the three earnings attributes, we also compare to a host of known 

anomalies: market capitalization (Fama and French [1992], [1993]), book-to-market 

ratio (Fama and French [1992], [1993]), pre-announcement return (Carhart [1997]), 

earnings persistence (Francis et al. [2004]), earnings volatility (Cao and 

Narayanamoorthy [2012]), gross profitability (Novy-Marx [2013]), operating 

profitability (Ball et al. [2016]), total accruals (Richardson et al. [2005]), operating 

accruals (Sloan [1996], Hribar and Collins [2002]), and asset growth (Cooper et al. 

[2008]). 

Specifically, we estimate Fama and MacBeth [1973] regressions in which the 

dependent variable is the firm’s post-announcement 63-day Fama-French five-factor 

and momentum-adjusted buy-and-hold return (FF6). Using FF6 ensures that the return-

predicting ability of the CNN buy probability (or the CNN buy+ probability) is not 

driven by the market, size, value, profitability, investment, or momentum factors.21 In 

each quarter, we run the following cross-sectional regressions for the CNN buy 

probability 

 
21To conserve space, we only report the results for FF6. The results are similar when using the other 

post-announcement buy-and-hold abnormal returns. 
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FF6𝑖𝑖,𝑞𝑞+1 = 𝛼𝛼𝑞𝑞 + 𝛽𝛽𝑞𝑞CNN buy probability𝑖𝑖,𝑞𝑞 + ∑𝛽𝛽𝑐𝑐,𝑞𝑞Controls𝑖𝑖,𝑞𝑞 + 𝜀𝜀𝑖𝑖,𝑞𝑞+1, (3) 

and the following cross-sectional regression for each of the three CNN+ buy probability 

FF6𝑖𝑖,𝑞𝑞+1 = 𝛼𝛼𝑞𝑞 + 𝛽𝛽𝑞𝑞CNN+ buy probability𝑖𝑖,𝑞𝑞 + ∑𝛽𝛽𝑐𝑐,𝑞𝑞Controls𝑖𝑖,𝑞𝑞 + 𝜀𝜀𝑖𝑖,𝑞𝑞+1, (4) 

where 𝑖𝑖  refers to the stock, 𝑞𝑞  refers to the quarter, and FF6𝑖𝑖,𝑞𝑞+1  is the post-

announcement Fama-French five-factor and momentum-adjusted buy-and-hold return 

over the windows [+2, +64] in trading days relative to firm 𝑖𝑖’s earnings announcement 

date in quarter 𝑞𝑞 . The CNN buy probability, CNN+ buy probability, and control 

variables are converted into scaled ranks ranging from −0.5 to 0.5 with a mean of zero. 

Then, we average the cross-sectional coefficients across all quarters, and multiply them 

by 100 (so the coefficients are reported in percent).   

 Table 4 reports the results. First, the coefficient on the CNN buy probability in 

column 1 is 0.341 (t-statistic = 0.544), suggesting that the CNN buy probability does 

not yield incremental drift-predicting power beyond the 13 firm characteristics. 

However, the coefficient on the CNN+ buy probability in column 2 is 1.658 and 

statistically significant at the 1% level (t-statistic = 3.509), suggesting that a long-short 

strategy of going long on the highest CNN buy probability decile and short on the lowest 

decile generates an incremental 63-day FF6 of around 1.658%, controlling for other 

anomalies. We find similar results in columns 3 and 4: the coefficients on the CNN+ 

buy probability based on the other two CNN+ models are positive and statistically 

significant at the 5% level. 

The findings in Table 4 indicate that CNN is picking up features that relate to the 

existing anomalies in predicting post-announcement returns, while a significant fraction 

of the CNN+ buy probability’s drift-predicting power remains largely orthogonal to that 

of the existing anomalies. 
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5.3 Explaining the Drift Predictability of CNNBP/CNNBP+ 

Having demonstrated the superior return-predicting power of the CNN+ buy 

probability relative to that of the CNN buy probability using both portfolio analysis and 

cross-sectional regressions, in this section we seek to better understand the underlying 

sources of their return predictability via a decomposition exercise. 

We adopt the econometric approach in Hou and Loh [2016] to evaluate a number 

of candidate variables that may potentially explain the return-predicting ability of the 

CNN buy probability and that of the CNN+ buy probability. Specifically, their 

methodology allows us to quantify the extent to which each candidate explanation 

accounts for the return predictability of the CNN buy probability, either in isolation or 

after controlling for other competing explanations. To conserve space, we describe the 

methodology using the CNN buy probability in the following discussions; the same 

process applies to the CNN+ buy probability. 

First, we estimate Fama and MacBeth [1973] cross-sectional regressions to 

examine the relation between the CNN buy probability and post-earnings announcement 

returns. For each quarter q between 2010Q3 to 2023Q2, we run the following cross-

sectional regression: 

FF6𝑖𝑖,𝑞𝑞+1 = 𝛼𝛼𝑞𝑞 + 𝛽𝛽𝑞𝑞CNNBP𝑖𝑖,𝑞𝑞 + 𝜀𝜀𝑖𝑖,𝑞𝑞+1, (5) 

where 𝑖𝑖  refers to the stock, 𝑞𝑞  refers to the quarter, and FF6𝑖𝑖,𝑞𝑞+1  is the post-

announcement Fama-French five-factor and momentum-adjusted buy-and-hold return 

over the windows [+2, +64] in trading days relative to firm 𝑖𝑖’s earnings announcement 

date in quarter 𝑞𝑞. Using FF6 ensures that the return-predicting ability of the CNN buy 

probability is not driven by the market, size, value, profitability, investment, or 
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momentum factors.22 The CNN buy probability is converted into scaled ranks ranging 

from −0.5 to 0.5 with a mean of zero. The average coefficient (multiplied by 100 and 

reported in percent) on the CNN buy probability across all quarters equals 1.281% with 

a t-statistic of 2.617, suggesting a positive relation between the CNN buy probability 

and post-announcement returns.  

Next, for each quarter q, we regress the CNN buy probability on a candidate 

explanatory variable: 

CNNBP𝑖𝑖,𝑞𝑞 = 𝑎𝑎𝑞𝑞 + 𝛿𝛿𝑞𝑞Candidate𝑖𝑖,𝑞𝑞 + 𝜇𝜇𝑖𝑖,𝑞𝑞 , (6) 

where both The CNN buy probability and the candidate variables are converted into 

scaled ranks ranging from −0.5 to 0.5 with a mean of zero. After obtaining the 

regression coefficient estimates, we decompose CNNBP𝑖𝑖,𝑞𝑞  into two orthogonal 

components: the candidate component ( = 𝛿𝛿𝑞𝑞Candidate𝑖𝑖,𝑞𝑞 ) is the component of 

CNNBP𝑖𝑖,𝑞𝑞 related to the candidate variable, and the residual component (= 𝑎𝑎𝑞𝑞 + 𝜇𝜇𝑖𝑖,𝑞𝑞) 

is the component of CNNBP𝑖𝑖,𝑞𝑞 unrelated to the candidate variable.  

Lastly, we use the linearity of covariances to decompose the 𝛽𝛽𝑞𝑞 from equation (5) 

into two components, 𝛽𝛽𝑞𝑞
C and 𝛽𝛽𝑞𝑞

𝑅𝑅, where the former is the component of 𝛽𝛽𝑞𝑞 related 

to the candidate variable and the latter is the component of 𝛽𝛽𝑞𝑞  unrelated to the 

candidate variable. Specifically, 

 
22The results are similar when using the other post-announcement buy-and-hold abnormal returns. 
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𝛽𝛽𝑞𝑞 =
𝐶𝐶𝐶𝐶𝐶𝐶�FF6𝑖𝑖,𝑞𝑞+1, CNNBP𝑖𝑖,𝑞𝑞�

𝑉𝑉𝑉𝑉𝑉𝑉�CNNBP𝑖𝑖,𝑞𝑞�

      =
𝐶𝐶𝐶𝐶𝐶𝐶�FF6𝑖𝑖,𝑞𝑞+1, �𝛿𝛿𝑞𝑞Candidate𝑖𝑖,𝑞𝑞 + 𝛼𝛼𝑞𝑞 + 𝜇𝜇𝑖𝑖,𝑞𝑞��

𝑉𝑉𝑉𝑉𝑉𝑉�CNNBP𝑖𝑖,𝑞𝑞�

      =
𝐶𝐶𝐶𝐶𝐶𝐶�FF6𝑖𝑖,𝑞𝑞+1, 𝛿𝛿𝑞𝑞Candidate𝑖𝑖,𝑞𝑞�

𝑉𝑉𝑉𝑉𝑉𝑉�CNNBP𝑖𝑖,𝑞𝑞�
+

𝐶𝐶𝐶𝐶𝐶𝐶�FF6𝑖𝑖,𝑞𝑞+1, �𝛼𝛼𝑞𝑞 + 𝜇𝜇𝑖𝑖,𝑞𝑞��
𝑉𝑉𝑉𝑉𝑉𝑉�CNNBP𝑖𝑖,𝑞𝑞�

 

      = 𝛽𝛽𝑞𝑞
C + 𝛽𝛽𝑞𝑞

𝑅𝑅 .                                                                                                                   (7)   

 

Therefore, 𝛽𝛽𝑞𝑞
C/𝛽𝛽𝑞𝑞 measures the fraction of the CNNBP’s drift predictability explained 

by the candidate variable, and 𝛽𝛽𝑞𝑞
R/𝛽𝛽𝑞𝑞  measures the “residual” fraction of the 

CNNBP’s drift predictability left unexplained by the candidate variable. By 

construction, these two fractions sum to one. While the means and variances of the two 

fractions do not have closed forms, Hou and Loh [2016] derive their approximations 

using the multivariate delta method based on Taylor series expansions. As a result, we 

can test the statistical significance of both fractions. 

For a candidate variable to have positive contribution towards explaining the 

CNNBP’s drift predictability (i.e., 𝛽𝛽𝑞𝑞
C

𝛽𝛽𝑞𝑞
> 0), the correlation between the CNNBP and 

the candidate variable (sign captured by 𝛿𝛿𝑞𝑞) and the correlation between FF6 and the 

candidate variable (i.e., 𝐶𝐶𝐶𝐶𝐶𝐶�FF6𝑖𝑖,𝑞𝑞+1, Candidate𝑖𝑖,𝑞𝑞�) should have the same sign. In 

contrast, if one of the correlations is close to zero or if the two correlations have 

opposite signs, then the candidate variable may contribute little or negatively to 

explaining the CNNBP’s drift predictability. 

5.3.1 Evaluating candidate explanations one at a time 

Panel A of Table 5 presents the results for this decomposition exercise using each of the 

13 variables as the candidate variable to explain the CNNBP’s drift predictability. We 

start off by using standardized unexpected earnings (SUE) as an example to illustrate 
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the decomposition analysis (column 1 in Panel A, Table 4). Step 1 is the baseline 

regression of regressing FF6 on CNNBP, and the average coefficient on CNNBP is 

1.281% (t-statistic = 2.617). Note that the average coefficients on CNNBP in Step 1 are 

the same across all candidate variables, since we require the 13 firm variables to be 

non-missing in the out-of-sample dataset.  

In Step 2, we regress CNNBP on SUE each quarter. The average coefficient on 

SUE is 44.200 with a t-statistic of 31.333, suggesting that CNNBP is significantly 

related to SUE (moving from the lowest decile to the highest decile of CNNBP on 

average leads to a 44.2% increase in the decile of CNN buy probability). The adjusted 

R-squared further shows that 19.9% of the variation in CNNBP can be explained by 

SUE. In addition, Step 2 allows us to decompose CNNBP each quarter into two 

orthogonal components: the candidate component (𝛿𝛿𝑞𝑞SUE𝑖𝑖,𝑞𝑞 ) is the component of 

CNNBP related to SUE and the residual component (𝑎𝑎𝑞𝑞 + 𝜇𝜇𝑖𝑖,𝑞𝑞) is the component of 

CNNBP unrelated to SUE. 

 In Step 3, we use the above two components to decompose the coefficient on 

CNNBP (𝛽𝛽𝑞𝑞) in Step 1 into a component that is related to SUE (𝛽𝛽𝑞𝑞
C) and a residual 

component (𝛽𝛽𝑞𝑞
R), as shown in equation (7). The time-series averages of 𝛽𝛽𝑞𝑞

C and 𝛽𝛽𝑞𝑞
𝑅𝑅 

are 0.818% and 0.463%, respectively, and they sum to 𝛽𝛽𝑞𝑞 (= 1.281%)  by 

construction. Since 𝛽𝛽𝑞𝑞
C

𝛽𝛽𝑞𝑞
= 63.8%  and is statistically significant at the 1% level (t-

statistic = 2.815), we conclude that SUE alone explains 63.8% CNNBP’s drift 

predictability (i.e., the relation between CNNBP𝑞𝑞 and FF6𝑞𝑞+1). On the other hand, the 

fraction left unexplained is 36.2% (= 𝛽𝛽𝑞𝑞
R

𝛽𝛽𝑞𝑞
), which is statistically indistinguishable from 

zero.  

Turning to the other candidate variables, we find that in Step 2 CNNBP is 

positively related to earnings acceleration (EA), trend in gross profitability (TREND), 
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past returns (PASTRET), earnings persistence (PERSIST), earnings volatility (VOL), 

book-to-market ratio (BM), while negatively related to market capitalization (SIZE), 

gross profitability (GP), operating profitability (OP), operating accruals (OA), total 

accruals (TA), and asset growth (AG). Step 3 suggests that SUE and TREND explains 

37.1% and 9.5% of the CNNBP’s drift predictability, respectively, while the other 

candidate variables’ contributions are not statistically significant at the 10% level. 

 Panels B to D presents the analogous decomposition exercise for the CNN+ buy 

probability generated by the CFO, IBCA, and OE versions of the CNN+ model, 

respectively. First, Step 1 in Panels B to D shows that the average coefficients on 

CNNBP+ across all quarters are 2.088% (t-statistic = 3.670), 1.716% (t-statistic = 

3.311), and 1.760% (t-statistic = 3.905), respectively, suggesting a positive relation 

between each of the three CNN+ buy probability and the post-announcement returns.  

 Next, while the three CNN+ models are based on different earnings quality 

measures, Step 2 in Panels B to D suggests that the three CNN+ buy probabilities 

exhibit certain similarities—they are all positively related to SUE, EA, TREND, 

PASTRET, PERSIST, VOL, and GP, and negatively related to OA, TA, and AG. In 

contrast, a striking difference emerges when compared to Step 2 in Panel A: gross 

profitability (GP) is negatively associated with CNNBP, but positively associated with 

CNNBP+.  

Finally, Step 3 shows that the drift predictability of CNNBP+ can be significantly 

explained by SUE (31.4%), EA (14.1%), TREND (5.9%), and GP (15.7%); by SUE 

(36.5%), EA (20.2%), and SIZE (11.3%); and by SUE (37.3%), EA (19.3%), TREND 

(7.6%), SIZE (12.7%), BM (9.3%), and GP (7.2%) in Panels A, B, and C, respectively.  
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5.3.2 Evaluating all candidate explanations simultaneously  

Next, we proceed to examine the total fraction of the CNNBP’s (or CNNBP+’s) 

drift predictability that the 13 candidate variables can collectively explain and assess 

the marginal contribution of each candidate variable after controlling for the other 

candidate variables. Table 6 reports the results of this multivariate analysis.  

Step 1 is the same as in Table 5. In Step 2, we find the 13 variables explain 32.5%, 

21.5%, 26.4%, and 27.2% of the variation in CNNBP, CFO, IBCA, and OE versions of 

CNNBP+, respectively. The relation between CNNBP (or CNNBP+) and each of the 

13 variables is similar as before. For example, we continue to find that both CNNBP 

and CNNBP+ are positively related to SUE, while negatively related to OA. Notably, 

CNNBP is insignificantly related to GP, while the three versions of CNNBP+ are 

positively related to GP.  

Step 3 shows that the 13 variables collectively explain 85.4% (= 100% -14.6%) of 

CNNBP’s drift predictability. Consistent with the findings in Panel A of T able 5, SUE 

and EA stand out, explaining 59.1% (t-statistic = 2.817) and 14.3% (t-statistic = 1.952) 

of the return predictability, respectively. The fraction left unexplained is 14.6% and is 

statistically indistinguishable from zero (t-statistic = 0.407). The results explain why 

the coefficient of regressing post-announcement returns (FF6) on the CNN buy 

probability is insignificant in column 1 of Table 3: the CNN buy probability’s drift-

predicting ability largely resembles that of SUE and EA, and thus disappears after 

controlling for SUE and EA in the regression. 

On the other hand, while SUE continues to play an important role in explaining 

each of the three CNN+ buy probability’s drift-predicting ability (ranging from 28.6% 

to 35.1%), gross profitability (GP) also has a decent contribution (ranging from 7.7% 

to 12.5%). Overall, we see the fraction of the CNNBP+’s drift predictability left 
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unexplained is 60.6% (t-statistic = 4.820), 44.9% (t-statistic = 2.983), and 41.8% (t-

statistic = 2.399) when CNNBP+ is generated by CFO, IBCA, and OE versions of the 

CNN+ models, respectively. The results explain why the coefficient of regressing post-

announcement buy-and-hold abnormal returns on the CNN+ buy probability all 

shrinks23 after controlling for the 13 variables, but remains significantly positive: SUE 

and GP can partially, but not fully, explain the CNN+ buy probability’s return-predicting 

power. 

Overall, the decomposition analyses in Tables 5 and 6 offer insights into the drift-

predictive power of both the CNN and CNN+ buy probabilities. Specifically, the 

findings indicate that CNN is able to extract relevant information from earnings images 

that is predictive of future returns. However, its limitation lies in its inability to identify 

features beyond the earnings data itself, as most of the drift predictability associated 

with the CNN buy probability is already captured by standardized unexpected earnings 

(SUE) and earnings acceleration (EA), both of which are transformations of the 

underlying earnings figures. 

In contrast, the drift-predictive features captured by the three CNN+ models 

extend beyond SUE to also encompass gross profitability (GP), an anomaly that is not 

based on earnings. This finding is particularly noteworthy given that GP is not directly 

employed as the earnings quality measure in constructing the variation earnings bar 

charts; instead, we rely on cash flow from continuing operations (CFO) and two 

operating earnings variables—IBCA and OE. Furthermore, the 13 firm characteristics 

collectively explain around 40% to 60% of the drift-predictive power of the CNN+ buy 

probability, leaving a substantial fraction unexplained. In other words, after we utilize 

 
23When going from the univariate regression (the first two columns in Table 4) to the multivariate 

regression in Table 3, the coefficient on the CNN+ buy probability shrinks from 2.088% to 1.658%, from 
1.716% to 1.110%, and from 1.760% to 1.059% when employing CFO, IBCA, and OE as the earnings 
quality measure to create shaded earnings images for the CNN+ models, respectively. 
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the concept of earnings quality to create variation earnings bar-chart images, the three 

CNN+ models capture drift-predictive features that are incremental to the existing 

anomalies in predicting post-announcement returns. The capacity of the CNN+ models 

to uncover novel sources of return predictability may potentially explain their superior 

performance relative to the baseline CNN. 

6  Conclusion  

Our research explores the potential of applying AI to visualized earnings data in 

financial analysis. First, we transform time series quarterly earnings into earnings bar-

chart images, and train CNNs on these images to extract features predictive of post-

earnings announcement drift. We find that its out-of-sample drift predictability 

outperforms that of alternative trend-detectable models. 

Next, we employ accounting domain expertise to enrich the earnings bar charts 

with earnings quality information. Specifically, we borrow three established earnings 

quality measures from the literature, adjust the shading of earnings bars to reflect 

earnings quality, and train CNNs on these images accordingly. We find the out-of-

sample drift-predicting performance based on the shaded earnings images is superior to 

that based on the unshaded earnings images, and remains significant after controlling 

for previously documented anomalies and earnings attributes.  

Using a decomposition framework, we show that the drift predictability based on 

CNN alone can be largely attributed to earnings-based drift predictors such as 

standardized unexpected earnings and earnings acceleration. In contrast, incorporating 

human expertise into the CNN model extends its drift-predictive power beyond 

standardized unexpected earnings to also capture gross profitability. Importantly, a 

significant portion of the drift predictability based on the combined wisdom of humans 
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and CNN remains unexplained by existing return anomalies.  

Overall, our paper highlights the usefulness of applying AI along with human 

domain expertise to visualized data in accounting research. Although AI increasingly 

challenges the role of human expertise in accounting, our findings provide a modest 

example in which AI achieves superior performance when supported by human 

insights—reinforcing the unique value accountants bring to the table. 

  



 37 

References 
 
Akbas, F., C. Jiang, and P. D. Koch (2017). The trend in firm profitability and the cross-

section of stock returns. The Accounting Review 92(5), 1–32. 
 
Ball, R. and P. Brown (1968). An empirical evaluation of accounting income numbers. 

Journal of Accounting Research 6(2), 159–178. 
 
Ball, R., J. Gerakos, J. T. Linnainmaa, and V. Nikolaev (2016). Accruals, cash flows, 

and operating profitability in the cross section of stock returns. Journal of Financial 
Economics 121(1), 28–45. 

 
Ball, R. and V. V. Nikolaev (2022). On earnings and cash flows as predictors of future 

cash flows. Journal of Accounting and Economics, 73(1), 101430. 
 
Bao, Y., B. Ke, B. Li, and J. Yu. (2020). Detecting accounting fraud in publicly traded 

U.S. firms using a machine learning approach. Journal of Accounting Research 
58(1), 199–235. 

 
Bernard, V. L. and J. K. Thomas (1989). Post-earnings-announcement drift: Delayed 

price response or risk premium? Journal of Accounting Research 27, 1–36. 
 
Brown, N. R. Crowley, B. Elliott (2020). What are you saying? Using topic to detect 

financial misreporting. Journal of Accounting Research 58(1), 237–291. 
 
Cao, S., Y. Cheng, M. Wang, Y. Xia, and B. Yang (2024). Visual information and AI 

divide: Evidence from corporate executive presentations. Available at SSRN. 
 
Cao, S., W. Jiang, J. Wang, and B. Yang (2024). From man vs. machine to man+ 

machine: The art and AI of stock analyses. Journal of Financial Economics 160, 
103910. 

 
Cao, S. S. and G. S. Narayanamoorthy (2012). Earnings volatility, post-earnings 

announcement drift, and trading frictions. Journal of Accounting Research 50(1), 
41–74. 

 
Carhart, M. M. (1997). On persistence in mutual fund performance. The Journal of 

Finance 52(1), 57–82. 
 
Chen, L., M. Pelger, and J. Zhu (2024). Deep learning in asset pricing. Management 

Science 70(2), 714–750. 
 
Chen, X., Y. H. Cho, Y. Dou, and B. Lev (2022). Predicting earnings changes using 

machine learning and detailed financial data. Journal of Accounting Research 60(2), 
467–515. 



 38 

 
Christensen, T. E., K. E. Fronk, J. A. Lee, and K. K. Nelson (2024). Data visualization 

in 10-k filings. Journal of Accounting and Economics 77 (2-3), 101631. 
 
Collins, D. W. and P. Hribar (2000). Earnings-based and accrual-based market 

anomalies: one effect or two? Journal of Accounting and Economics 29(1), 101–
123. 

 
Cooper, M. J., H. Gulen, and M. J. Schill (2008). Asset growth and the cross-section of 

stock returns. The Journal of Finance 63(4), 1609–1651. 
 
Daniel, K., D. Hirshleifer, and L. Sun (2020). Short-and long-horizon behavioral factors. 

The Review of Financial Studies 33(4), 1673–1736. 
 
Dechow, P. M. and I.D. Dichev (2002). The quality of accruals and earnings: The role 

of accrual estimation errors. The Accounting Review, 77(s-1), 35–59. 
 
Dechow, P. M. and C. Schrand (2004). Earnings quality. The Research Foundation of 

CFA Institute. 
 
Dechow, P., W. Ge, and C. Schrand (2010). Understanding earnings quality: A review 

of the proxies, their determinants and their consequences. Journal of Accounting 
and Economics, 50(2-3), 344–401. 

 
Dichev, I. D., J. R. Graham, C. R. Harvey, and S. Rajgopal (2013). Earnings quality: 

Evidence from the field. Journal of Accounting and Economics, 56(2-3), 1–33. 
 
Engelberg, J., C. Sasseville, and J. Williams (2012). Market madness? The case of mad 

money. Management Science 58(2), 351–364. 
 
Fama, E. F. and K. R. French (1992). The cross-section of expected stock returns. The 

Journal of Finance 47(2), 427–465. 
 
Fama, E. F. and K. R. French (1993). Common risk factors in the returns on stocks and 

bonds. Journal of Financial Economics 33(1), 3–56. 
 
Fama, E. F. and K. R. French (2015). A five-factor asset pricing model. Journal of 

Financial Economics 116(1), 1–22. 
 
Fama, E. F. and K. R. French (2018). Choosing factors. Journal of Financial Economics 

128(2), 234–252. 
 
Fama, E. F. and J. D. MacBeth (1973). Risk, return, and equilibrium: Empirical tests. 

Journal of Political Economy 81(3), 607–636. 
 



 39 

Feng, G., S. Giglio, and D. Xiu (2020). Taming the factor zoo: A test of new factors. 
The Journal of Finance 75 (3), 1327–1370. 

 
Foster, G., C. Olsen, and T. Shevlin (1984). Earnings releases, anomalies, and the 

behavior of security returns. The Accounting Review, 574–603. 
 
Francis, J., R. LaFond, P. M. Olsson, and K. Schipper (2004). Costs of equity and 

earnings attributes. The Accounting Review 79(4), 967–1010. 
 
Frank, M. Z. and A. Sanati (2018). How does the stock market absorb shocks? Journal 

of Financial Economics 129(1), 136–153. 
 
Freyberger, J., A. Neuhierl, and M. Weber (2020). Dissecting characteristics 

nonparametrically. The Review of Financial Studies 33(5), 2326–2377. 
 
Garfinkel, J. A. and J. Sokobin (2006). Volume, opinion divergence, and returns: A 

study of post–earnings announcement drift. Journal of Accounting Research 44(1), 
85–112. 

 
Gu, M., S. H. Teoh, and S. Wu (2023). GIF sentiment and stock returns. Available at 

SSRN. 
 
Gu, S., B. Kelly, and D. Xiu (2020). Empirical asset pricing via machine learning. The 

Review of Financial Studies 33(5), 2223–2273. 
 
Gu, S., B. Kelly, and D. Xiu (2021). Autoencoder asset pricing models. Journal of 

Econometrics 222(1), 429–450. 
 
He, S. and G. G. Narayanamoorthy (2020). Earnings acceleration and stock returns. 

Journal of Accounting and Economics 69(1), 101238. 
 
Hou, K. and R. K. Loh (2016). Have we solved the idiosyncratic volatility puzzle? 

Journal of Financial Economics 121(1), 167–194. 
 
Hou, K., H. Mo, C. Xue, and L. Zhang (2021). An augmented q-factor model with 

expected growth. Review of Finance 25(1), 1–41. 
 
Hou, K., C. Xue, and L. Zhang (2015). Digesting anomalies: An investment approach. 

The Review of Financial Studies 28(3), 650–705. 
 
Hribar, P. and D. W. Collins (2002). Errors in estimating accruals: Implications for 

empirical research. Journal of Accounting Research 40(1), 105–134. 
 
Hu, A. and S. Ma (2024). Persuading investors: A video-based study. Forthcoming at 

The Journal of Finance. 
 



 40 

Jiang, J., B. Kelly, and D. Xiu (2023). (Re-) imag (in) ing price trends. The Journal of 
Finance 78(6), 3193–3249. 

 
Kapadia, N. and M. Zekhnini (2019). Do idiosyncratic jumps matter? Journal of 

Financial Economics 13(3), 666–692. 
 
Kelly, B. T., S. Pruitt, and Y. Su (2019). Characteristics are covariances: A unified model 

of risk and return. Journal of Financial Economics 134(3), 501–524. 
  
Kim, A. M. Muhn, V. Nikolaev (2024). Financial Statement Analysis with Large 

Language Models. Available at arXiv. 
 
Kozak, S., S. Nagel, and S. Santosh (2020). Shrinking the cross-section. Journal of 

Financial Economics 135 (2), 271–292. 
 
Leippold, M., Q. Wang, and W. Zhou (2022). Machine learning in the Chinese stock 

market. Journal of Financial Economics 145(2), 64–82. 
 
Livnat, J. and R. R. Mendenhall (2006). Comparing the post-earnings announcement 

drift for surprises calculated from analyst and time series forecasts. Journal of 
Accounting Research 44(1), 177–205. 

 
Moss, A. (2022). How do brokerages’ digital engagement practices affect retail investor 

information processing and trading? Ph.D. thesis, The University of Iowa. 
 
Murray, S., Y. Xia, and H. Xiao (2024). Charting by machines. Journal of Financial 

Economics 153, 103791. 
 
Nekrasov, A., S. H. Teoh, and S. Wu (2022). Visuals and attention to earnings news on 

twitter. Review of Accounting Studies 27(4), 1233–1275. 
 
Newey, W. K. and K. D. West (1987). A simple, positive semi-definite, 

heteroskedasticity and autocorrelation. Econometrica 55(3), 703–708. 
 
Novy-Marx, R. (2013). The other side of value: The gross profitability premium. 

Journal of Financial Economics 108(1), 1–28. 
 
Obaid, K. and K. Pukthuanthong (2022). A picture is worth a thousand words: 

Measuring investor sentiment by combining machine learning and photos from 
news. Journal of Financial Economics 144(1), 273–297. 

 
Penman, S. H. and X. J. Zhang (2002). Accounting conservatism, the quality of earnings, 

and stock returns. The Accounting Review 77(2), 237–264. 
 
Rangan, S. and R. G. Sloan (1998). Implications of the integral approach to quarterly 

reporting for the post-earnings-announcement drift. The Accounting Review, 353–



 41 

371. 
 
Rapach, D. E., J. K. Strauss, and G. Zhou (2013). International stock return 

predictability: What is the role of the United States? The Journal of Finance 68(4), 
1633–1662. 

 
Richardson, S. A., R. G. Sloan, M. T. Soliman, and I. Tuna (2005). Accrual reliability, 

earnings persistence and stock prices. Journal of Accounting and Economics 39(3), 
437–485. 

 
Savor, P. G. (2012). Stock returns after major price shocks: The impact of information. 

Journal of Financial Economics 106(3), 635–659. 
 
Sloan, R. G. (1996). Do stock prices fully reflect information in accruals and cash flows 

about future earnings? The Accounting Review, 289–315. 
 
Vega, C. (2006). Stock price reaction to public and private information. Journal of 

Financial Economics 82(1), 103–133. 
 
  



 42 

Appendix A. Plotting Earnings Images. 

First, let 𝐸𝐸1, 𝐸𝐸2, … , 𝐸𝐸8  denote the most recent eight quarterly earnings 

corresponding to quarter 𝑞𝑞 − 7, 𝑞𝑞 − 6, … , 𝑞𝑞, 𝐸𝐸MAX  and 𝐸𝐸MIN  denote the maximum 

and minimum of the eight quarterly earnings, and 𝑟𝑟( ) denote the function that rounds 

the input value to the nearest whole number. We set the bottom-left vertex of the image 

as the origin of a two-dimensional coordinate system, so a rectangular area in the image 

can be represented as ([𝑥𝑥1, 𝑥𝑥2], [𝑦𝑦1, 𝑦𝑦2]). Next, we classify firms’ most recent eight 

quarterly earnings into one of the three types, determine the values corresponding to 

the top and bottom of the image, and plot each quarterly earnings into bars accordingly. 

The three types are as follows: 

 Type I (𝐸𝐸MIN  ≥ 0; the most recent eight quarterly earnings are all non-

negative): In this case, we set 𝐸𝐸MAX and 0 as the top and bottom of the image, 

respectively. 𝐸𝐸i is plotted as the area of 

�[3𝑖𝑖 − 2,3𝑖𝑖 − 1], �0, 𝑟𝑟 �24 ∗
𝐸𝐸𝑖𝑖

𝐸𝐸MAX
��� , (1) 

for 𝑖𝑖 = 1, ..., 8. Image 1 in Figure 2 displays an example earnings image of 

this type. The maximum earnings is 𝐸𝐸7 and thus it occupies a whole column. 

All other quarterly earnings are plotted upward, and their heights are 

determined using 𝐸𝐸7 as the reference point. 

 Type II (𝐸𝐸MAX > 0 and 𝐸𝐸MIN < 0; the maximum quarterly earnings is positive 

while the minimum earnings is negative): In this case, 𝐸𝐸MAX  and 𝐸𝐸MIN 

coincide with the top and bottom of the image, respectively. The implicit “zero-

earnings line” corresponds to 𝑟𝑟 �24 ∗ −𝐸𝐸𝑀𝑀𝑀𝑀𝑀𝑀
𝐸𝐸MAX−𝐸𝐸MIN

�, and 𝐸𝐸i is plotted above or 

below the zero-earnings line as follows: 
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⎩
⎨

⎧ [3𝑖𝑖 − 2,3𝑖𝑖 − 1], �𝑟𝑟 �24 ∗
−𝐸𝐸𝑀𝑀𝑀𝑀𝑀𝑀

𝐸𝐸MAX − 𝐸𝐸MIN
� , 𝑟𝑟 �24 ∗

−𝐸𝐸𝑀𝑀𝑀𝑀𝑀𝑀

𝐸𝐸MAX − 𝐸𝐸MIN
� + 𝑟𝑟 �24 ∗

𝐸𝐸𝑖𝑖

𝐸𝐸MAX − 𝐸𝐸MIN
��  𝑖𝑖𝑖𝑖 𝐸𝐸𝑖𝑖 > 0,

[3𝑖𝑖 − 2,3𝑖𝑖 − 1], �𝑟𝑟 �24 ∗
−𝐸𝐸MIN

𝐸𝐸MAX − 𝐸𝐸MIN
� − 𝑟𝑟 �24 ∗

−𝐸𝐸𝑖𝑖

𝐸𝐸MAX − 𝐸𝐸MIN
� , 𝑟𝑟 �24 ∗

−𝐸𝐸MIN

𝐸𝐸MAX − 𝐸𝐸MIN
��  𝑖𝑖𝑖𝑖  𝐸𝐸𝑖𝑖 ≤ 0,

 

               (2) 

for 𝑖𝑖 = 1, ..., 8. Image 2 in Figure 2 displays an example earnings image of 

this type. Here we see the advantage of using bar charts as opposed to line 

graphs when plotting earnings. Bars can represent positive, zero, or negative 

earnings without further specifying numbers on the vertical axis. Positive 

earnings are plotted upward while negative earnings are plotted downward, 

and the bar lengths (in pixels) are computed as the rounded value of 24 

multiplied by the absolute values of 𝐸𝐸i scaled by 𝐸𝐸MAX − 𝐸𝐸MIN. 

 Type III (𝐸𝐸MAX  ≤ 0; the most recent eight quarterly earnings are all non-

positive): In this case, 0 and 𝐸𝐸MIN coincide with the top and bottom of the 

image, respectively. 𝐸𝐸i is plotted as the area of 

[3𝑖𝑖 − 2,3𝑖𝑖 − 1], �24 − 𝑟𝑟 �24 ∗
𝐸𝐸𝑖𝑖

𝐸𝐸MIN
� , 24� , (3) 

 

for 𝑖𝑖 = 1, ..., 8. Image 3 in Figure 2 displays an example earnings image of 

this type. The minimum earnings is 𝐸𝐸5 and thus it occupies a whole column. 

All earnings are plotted downward, and their heights are plotted using 𝐸𝐸5 as 

the reference point. 

Note that in all three types, it is possible for 𝐸𝐸i  to be very close to zero after 

scaling and thus does not occupy a full pixel in the image after rounding, i.e., 𝑦𝑦1 =

𝑦𝑦2.24 In addition, the distance between two neighboring earning of pixel between is 

 
24One extreme case is that all eight quarterly earnings are very close to each other so that when 

plotting earnings on a bar chart, each earnings bar occupies a whole column. In this case, one cannot tell 
from the image whether all earnings are positive or negative. However, we checked all earnings images 
and did not find this extreme case. 
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greater than the distance between the leftmost (or rightmost) earnings and the border of 

the image, which is consistent with the default setup of a bar chart for most statistical 

software. 

Appendix B. Variable Definitions. This table summarizes variable definitions.  

Variables Descriptions 
MAR Market-adjusted return (MAR) is defined as the difference between the 

buy-and-hold return of an announcing firm and that of the CRSP value-
weighted market portfolio over the 63-day windows [+2, +64] following 
its earnings announcement date. 

SAR Size-adjusted return (SAR) is defined as the difference between the buy-
and-hold return of an announcing firm and that of a size-matched portfolio 
over the 63-day window ([+2, +64]) following its earnings announcement 
date. We use the monthly NYSE size decile breakpoints at the end of June 
in year 𝑡𝑡  to determine the size-matched portfolio for a firm whose 
earnings announcement date is between July of year 𝑡𝑡 to June of year 𝑡𝑡 +
1. 

FF4 Fama-French three-factor and momentum-adjusted buy-and-hold return 
during the 63-day window ([+2, +64]) following earnings announcement 
date, with factor loadings estimated using the 120-day window ([-150, -
31], 90 days minimum) prior to the earnings announcement date. The 
factors are market, size, value, and momentum. 

FF6 Fama-French five-factor and momentum-adjusted buy-and-hold return 
during the 63-day window ([+2, +64]) following earnings announcement 
date, with factor loadings estimated using the 120-day window ([-150, -
31], 90 days minimum) prior to the earnings announcement date. The 
factors are market, size, value, operating profitability, investment, and 
momentum. 

HMXZ5 q5-factor-adjusted buy-and-hold return during the 63-day window ([+2, 
+64]) following earnings announcement date, with factor loadings 
estimated using the 120-day window ([-150, -31], 90 days minimum) prior 
to the earnings announcement date. The factors are market, size, 
investment, return on equity, and expected growth. 

DHS3 Behavioral-factor-adjusted buy-and-hold return during the 63-day window 
([+2, +64]) following earnings announcement date, with factor loadings 
estimated using the 120-day window ([-150, -31], 90 days minimum) prior 
to the earnings announcement date. The factors are market, financing, and 
post earnings announcement drift. 
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CFO Quarterly cash flow from continuing operations, defined as the quarterly 
change in year-to-date net cash flow from operating activities (OANCFY) 
less the quarterly change in year-to-date cash flow from extraordinary 
items and discontinued operations (XIDOCY). The latter is set to zero if 
missing. CFO is scaled by total assets (ATQ) in the previous quarter. 

IBCA Quarterly adjusted income before extraordinary items, defined as the sum 
of the quarterly change in year-to-date income before extraordinary items 
reported in the cash flow statement (IBCY); the quarterly change in year-
to-date depreciation and amortization (DPCY); the quarterly change in 
year-to-date cash flow from extraordinary items and discontinued 
operations (XIDOCY); the quarterly change in year-to-date sale of 
property, plant and investments gain (SPPIVY); the quarterly change in 
year-to-date net loss earnings (ESUBCY); and the quarterly change in year-
to-date other items involved in the calculation of funds from operations 
(FOPOY). All missing items are set to zero except for the quarterly change 
in year-to-date income before extraordinary items reported in the cash flow 
statement. IBCA is scaled by total assets (ATQ) in the previous quarter. 

OE Quarterly operating earnings, defined as the quarterly change in year-to-
date net cash flow from operating activities (OANCFY) minus the sum of 
the quarterly change in year-to-date accounts receivable decrease 
(RECCHY); the quarterly change in year-to-date inventory decrease 
(INVCHY); the quarterly change year-to-date accounts payable and 
accrued liabilities increase (APALCHY); the quarterly change in year-to-
date income taxed accrued increase (TXACHY); and the quarterly change 
in year-to-date net change in other assets and liabilities (AOLOCHY). All 
missing items are set to zero except for the quarterly change in year-to-date 
net cash flow from operating activities. OE is scaled by total assets (ATQ) 
in the previous quarter.  

SUE Standardized unexpected earnings, defined as quarter q’s EPS minus 
quarter q-4’s EPS, scaled by the standard deviation of EPS in the most 
recent eight quarters (six quarters minimum). EPS is computed as income 
before extraordinary items (IBQ), divided by shares outstanding 
(CSHOQ). Shares are adjusted for stock splits.  

EA Earnings acceleration. For firm 𝑖𝑖 in quarter 𝑞𝑞, we use 

EPS𝑖𝑖,𝑞𝑞 − EPS𝑖𝑖,𝑞𝑞−4

Stock Price𝑖𝑖,𝑞𝑞−1
−

EPS𝑖𝑖,𝑞𝑞−1 − EPS𝑖𝑖,𝑞𝑞−5

Stock Price𝑖𝑖,𝑞𝑞−2
 , 

where EPS𝑖𝑖,𝑞𝑞 is earnings per share for firm 𝑖𝑖 in quarter 𝑞𝑞. Shares 

are adjusted for stock splits. 

TREND Trend in quarterly gross profitability. For firm 𝑖𝑖 in quarter 𝑞𝑞, we use β𝑖𝑖,𝑞𝑞 
estimated from the following time-series regression: 
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𝐺𝐺𝐺𝐺𝐺𝐺𝑖𝑖,𝑞𝑞 = 𝛼𝛼𝑖𝑖,𝑞𝑞 + 𝛽𝛽𝑖𝑖,𝑞𝑞𝑡𝑡 + 𝜆𝜆1,𝑖𝑖,𝑞𝑞𝐷𝐷1 + 𝜆𝜆2,𝑖𝑖,𝑞𝑞𝐷𝐷2 + 𝜆𝜆3,𝑖𝑖,𝑞𝑞𝐷𝐷3 + 𝜖𝜖𝑖𝑖,𝑞𝑞 , 

where 𝑡𝑡 = 1, 2, … , 8  and represents a deterministic time trend covering 
quarter 𝑞𝑞 − 7  through 𝑞𝑞 , and D1 to D3 represent quarterly dummy 
variables. GPQ is calculated as sales revenue (SALEQ) minus costs of 
goods sold (COGSQ), divided by total assets (ATQ). If SALEQ is 
unavailable, we use quarterly revenue (REVTQ). If COGSQ is unavailable, 
we use quarterly total operating expenses (XOPRQ) minus quarterly 
selling, general and administrative expenses (XSGAQ, zero if missing). 

PASTRET Past return, defined as the value-weighted market-adjusted stock return 
during the [−30, −2] window prior to earnings announcement date. 

PERSIST Earnings persistence. For firm 𝑖𝑖  in quarter 𝑞𝑞 , we use 𝛽𝛽𝑖𝑖,𝑞𝑞  estimated 

from the following time-series regression: 

EARNINGS𝑖𝑖,𝑞𝑞 = 𝛼𝛼𝑖𝑖,𝑞𝑞 + 𝛽𝛽𝑖𝑖,𝑞𝑞EARNINGS𝑖𝑖,𝑞𝑞−1 + 𝜖𝜖𝑖𝑖,𝑞𝑞 , 

with the most recent eight quarters (quarter 𝑞𝑞 − 7  to 𝑞𝑞 ) of earnings 
(IBQ). 

VOL Earnings volatility. We use the standard deviation of ROA in the most 
recent eight quarters (quarter 𝑞𝑞 − 7 to 𝑞𝑞). ROA is defined as quarterly 
earnings (IBQ) divided by total assets (ATQ) in the previous quarter. 

SIZE Firm size for July of year 𝑡𝑡  to June of year 𝑡𝑡 + 1  is defined as June 
market capitalization (from CRSP) of year 𝑡𝑡. 

BM Book-to-market ratio for July of year t to June of year 𝑡𝑡 + 1 is defined as 
book equity for the fiscal year ending in calendar year 𝑡𝑡 − 1 divided by 
the market capitalization at the end of December of 𝑡𝑡 − 1. Book equity is 
computed as stockholders’ book equity (SEQ), plus deferred taxes (TXDB, 
zero if missing) and investment tax credit (ITCB, zero if missing), minus 
the book value of preferred stock (depending on availability, we use 
redemption (PSTKRF), carrying (PSTKL), or par value (PSTK)). 

GP Gross profitability for July of year 𝑡𝑡 to June of year 𝑡𝑡 + 1 is defined as 
sales revenue (SALE) minus cost of goods sold (COGS), divided by total 
assets (AT) for the fiscal year ending in calendar year 𝑡𝑡 − 1. If SALE is 
unavailable, we use revenue (REVT). If COGS is unavailable, we use total 
operating expenses (XOPR) minus selling, general and administrative 
expenses (XSGA, zero if missing). 

OP Operating profitability for July of year 𝑡𝑡 to June of year 𝑡𝑡 + 1 is defined 
as sales revenue (SALE) minus cost of goods sold (COGS), minus selling, 
general, and administrative expenses (XSGA), and plus research and 
development expenditures (XRD, zero if missing), scaled by total assets 
(AT) for the fiscal year ending in calendar year 𝑡𝑡 − 2 . If SALE is 
unavailable, we use revenue (REVT). If COGS is unavailable, we use total 
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operating expenses (XOPR) minus selling, general and administrative 
expenses (XSGA, zero if missing). 

TA Total accruals for July of year 𝑡𝑡 to June of year 𝑡𝑡 + 1 is defined as net 
income (NI) minus operating, investing, and financing net cash flows 
(OANCF, IVNCF, and FINCF) plus sales of stocks (SSTK, zero if missing) 
minus stock repurchases and dividends (items PRSTKC and DV, zero if 
missing) for the fiscal year ending in calendar year 𝑡𝑡 − 1, scaled by total 
assets (AT) for the fiscal year ending in 𝑡𝑡 − 2. 

OA Operating accruals for July of year 𝑡𝑡 to June of year 𝑡𝑡 + 1 is defined as 
net income (NI) minus net cash flow from operations (OANCF) for the 
fiscal year ending in calendar year 𝑡𝑡 − 1, scaled by total assets (AT) for 
the fiscal year ending in 𝑡𝑡 − 2. 

AG Asset growth for July of year 𝑡𝑡 to June of year 𝑡𝑡 + 1 is defined as total 
assets (AT) for the fiscal year ending in calendar year 𝑡𝑡 − 1 minus total 
assets for the fiscal year ending in 𝑡𝑡 − 2, scaled by total assets for the fiscal 
year ending in 𝑡𝑡 − 2. 
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Panel A.  Actual earnings chart from Meta’s Q3 2024 Earnings Presentation 
 

 

Panel B.  Transformed image of Meta’s earnings 

 

Figure 1.  Examples of visualized earnings information.  This figure displays the actual visualized 
earnings provided in Meta’s Q3 2024 Earnings presentation and the transformed image that is given to 
the CNN to predict the buy probability. 
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Image 1                        Image 2                        Image 3 

 

Figure 2.  Plotting Earnings Images.  This figure displays three example earnings images. 
𝐸𝐸1 , 𝐸𝐸2, …, and 𝐸𝐸8 represent quarterly earnings in quarter 𝑞𝑞−7, 𝑞𝑞−6, ..., and 𝑞𝑞, respectively. Image 
1 is a type I earnings image whose quarterly earnings in the most recent eight quarters are all non-
negative. Image 2 is a type I earnings image whose maximum quarterly earnings in the most recent 
eight quarters is positive, and the minimum quarterly earnings in the most recent eight quarters is 
negative. Image 3 is a type III earnings image whose quarterly earnings in the most recent eight 
quarters are all non-positive. 

 

 

 

 𝐸𝐸1 𝐸𝐸2 𝐸𝐸3 𝐸𝐸4 𝐸𝐸5 𝐸𝐸6 𝐸𝐸7 𝐸𝐸8 

Image 1 0.163 0.669 1.457 1.788 1.727 1.913 2.752 2.825 

Image 2 0.643 1.067 1.637 1.181 -0.911 1.377 1.047 0.493 

Image 3 -2.887 -3.934 -3.812 -4.613 -16.378 -7.156 -7.919 -5.768 
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Panel A.  Pixel value by earnings quality decile 

 

Panel B.  Earnings images with earnings quality shading 

 

 

 

 

 

Image 1                        Image 2                        Image 3 

 

Figure 3.  Plotting Earnings Images after incorporating Earnings Quality.  Panel A presents for 
each earnings quality decile the pixel values used to color the earnings bars. Panel B displays three 
example earnings images incorporated with earnings quality. 𝐸𝐸1 , 𝐸𝐸2, …,  and 𝐸𝐸8  represent the 
quarterly earnings in quarter 𝑞𝑞 −7, 𝑞𝑞 −6, ..., and 𝑞𝑞 , respectively. 𝐸𝐸𝐸𝐸1 , 𝐸𝐸𝐸𝐸2, …,  and 𝐸𝐸𝐸𝐸8  represent 
the earnings quality decile for 𝐸𝐸1 , 𝐸𝐸2, …, and 𝐸𝐸8, respectively.   

 

 Earnings quality decile 

 1 2 3 4 5 5.5 6 7 8 9 10 

Pixel value 26 51 77 102 128 140 153 179 204 230 255 

Color            

 𝐸𝐸1 𝐸𝐸2 𝐸𝐸3 𝐸𝐸4 𝐸𝐸5 𝐸𝐸6 𝐸𝐸7 𝐸𝐸8 

Image 1 0.163 0.669 1.457 1.788 1.727 1.913 2.752 2.825 

Image 2 0.643 1.067 1.637 1.181 -0.911 1.377 1.047 0.493 

Image 3 -2.887 -3.934 -3.812 -4.613 -16.378 -7.156 -7.919 -5.768 

 𝐸𝐸𝐸𝐸1 𝐸𝐸𝐸𝐸2 𝐸𝐸𝐸𝐸3 𝐸𝐸𝐸𝐸4 𝐸𝐸𝐸𝐸5 𝐸𝐸𝐸𝐸6 𝐸𝐸𝐸𝐸7 𝐸𝐸𝐸𝐸8 

Image 1 5.5 5 4 6 9 3 10 8 

Image 2 5 9 4 5 9 9 3 5 

Image 3 5.5 2 1 1 2 2 1 5 
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Panel A: CNN 

 

Panel B: CNN+ (CFO version) 

 

Panel C: CNN+ (IBCA version) 

 

Panel D: CNN+ (OE version) 

 

Figure 4. Drift-Predicting Performance Over Time: CNN vs. CNN+. This figure depicts the hedge 
portfolio return based on CNN and CFO, IBCA, and OE versions of CNN+ in Panels A to D, respectively, 
during the out-of-sample period (2010Q3-2023Q2). The hedge portfolio returns based on CNN (CNN+) are 
computed as the post-announcement 63-day Fama-French five-factor and momentum-adjusted buy-and-hold 
returns between the highest and lowest CNNBP (CNNBP+) deciles. See Appendix B for variable definitions. 
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Table 1.  
Sample Selection 

This table reports the sample selection procedures. The in-sample dataset is for model training. The out-of-sample dataset is for testing the out-of-
sample model performance. See Appendix B for variable definitions.  

All Compustat firm-quarters with matched CRSP Permno (SHRCD = 10 or 11; EXCHCD = 1, 2 or 3) whose earnings announcement 
date (Compustat item RDQ) is between 1974Q1 and 2023Q2 814,230 
Drop observations with missing RDQ in the most recent eight quarters (86,536) 

Drop observations with earnings announcements on the same date for the same firm in the most recent eight quarters (3,347) 

Drop observations with RDQ less than 30 days away from the previous quarter RDQ in the most recent eight quarters (16,942) 

Drop observations with RDQ before or more than 180 days after the quarter fiscal period end date in the most recent eight quarters (2,966) 

Drop observations with missing earnings (Compustat item IBQ) in the most recent eight quarters (74,377) 

Drop observations whose CRSP daily price at the current quarter RDQ is missing or ≤$1 (102,201) 

Drop financial firms (SIC codes between 6000 and 6999) and utility firms (SIC codes between 4900 and 4949) (109,372) 

Drop observations with non-positive book-to-market ratio (BM) or missing market capitalization (SIZE) (14,585) 

Drop observations with more than 30 missing CRSP daily returns in the 120-day window ([-150, -31]) prior to the current quarter RDQ (24) 

Total observations 403,880 

Table 2   

In-sample dataset: observations between 1974Q1 and 1993Q4 
Out-of-sample dataset: observations between 1994Q3 and 2023Q2 with non-missing SUE, EA, TREND, PASTRET, PERSIST, VOL, 
GP, OP, OA, TA, and AG 

124,341 
 

239,012 
Tables 3 to 6   

In-sample dataset: observations between 1990Q4 and 2009Q4 
Out-of-sample dataset: observations between 2010Q3 and 2023Q2 with non-missing SUE, EA, TREND, PASTRET, PERSIST, VOL, 
GP, OP, OA, TA, and AG and whose 10-K/10-Q filing is released no later than one day after RDQ 

191,118 
 
 

43,734 
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Table 2. 

Drift-Predicting Performance: CNN vs. LSTM and TFT  

 MAR     SAR FF4 FF6    HMXZ5 DHS3 

Panel A: CNN  
 0.035*** 0.035*** 0.031*** 0.032*** 0.034*** 0.034*** 
 (6.990) (6.812) (8.331) (8.961) (8.086) (7.809) 
Panel B: LSTM 
 0.030*** 0.029*** 0.026*** 0.026*** 0.027*** 0.025*** 
 (5.684) (5.349) (6.931) (7.631) (6.351) (6.001) 
Panel C: TFT 
 0.024*** 0.022*** 0.020*** 0.019*** 0.020*** 0.018*** 
 (4.802) (4.495) (5.853) (5.934) (5.513) (5.024) 
Panel D: CNN vs. LSTM 

 0.006* 0.006** 0.006** 0.006*** 0.006*** 0.008*** 
 (1.831) (1.998) (2.522) (2.735) (2.721) (3.373) 
Panel E: CNN vs. TFT 
 0.011** 0.013** 0.011** 0.013*** 0.014*** 0.015*** 
 (2.058) (2.512) (2.498) (2.968) (3.577) (3.574) 

Panels A to C report the average hedge portfolio returns during the out-of-sample period (1994Q3 to 
2023Q2) for CNN, LSTM, and TFT, respectively. The hedge portfolio returns based on CNN are 
computed as the differences in 63-day buy-and-hold abnormal returns (BHAR) following earnings 
announcements—including market-adjusted return (MAR), size-adjusted return (SAR), and factor-
adjusted returns (FF4, FF6, HMXZ5, and DHS3)—between the highest and lowest CNNBP deciles. 
CNNBP is the CNN buy probability generated by CNN. The CNNBP decile cutoffs are based on the 
distribution of the previous quarter’s CNNBP. The average hedge portfolio returns for LSTM and TFT 
are computed analogously. Panels E and F report the average differences in hedge portfolio returns 
between CNN and LSTM, and between CNN and TFT, respectively. See Appendix B for variable 
definitions. Newey and West [1987] t-statistics with three lags are reported in parentheses, and ***, 
**, and * indicate significance at the 1%, 5%, and 10% levels, respectively. 
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Table 3.  

Drift-Predicting Performance: CNN vs. CNN+  

 MAR     SAR FF4 FF6    HMXZ5 DHS3 

Panel A: CNN 
 0.021*** 0.021*** 0.022*** 0.021*** 0.023*** 0.025*** 
 (2.869) (2.858) (4.532) (4.333) (4.263) (3.444) 
Panel B: CNN+ (using CFO as the earnings quality measure) 
 0.039*** 0.039*** 0.042*** 0.041*** 0.042*** 0.044*** 
 (7.232) (7.296) (9.116) (9.153) (7.745) (6.779) 
Panel C: CNN+ (using IBCA as the earnings quality measure)  
 0.031*** 0.029*** 0.030*** 0.031*** 0.034*** 0.036*** 
 (4.588) (4.394) (5.773) (5.915) (6.556) (5.331) 
Panel D: CNN+ (using OE as the earnings quality measure) 

 0.031*** 0.030*** 0.030*** 0.030*** 0.032*** 0.036*** 
 (5.276) (5.468) (5.908) (5.636) (5.929) (4.915) 
Panel E: CNN+ (using CFO as the earnings quality measure) vs. CNN 
 0.018*** 0.019*** 0.020*** 0.020*** 0.018*** 0.019*** 
 (2.696) (3.098) (3.805) (3.564) (3.120) (0.409) 
Panel F: CNN+ (using IBCA as the earnings quality measure ) vs. CNN 
 0.009* 0.008* 0.008** 0.010*** 0.011** 0.011** 
 (1.871) (1.727) (2.649) (3.148) (2.524) (2.571) 
Panel G: CNN+ (using OE as the earnings quality measure) vs. CNN 
 0.010** 0.009** 0.008** 0.009** 0.008* 0.011** 
 (2.060) (2.047) (2.544) (2.592) (1.875) (2.639) 

Panels A to D report the average hedge portfolio returns in the out-of-sample period (2010Q3-2023Q2) 
for CNN and the CFO, IBCA, and OE versions of CNN+, respectively. Earnings images are unshaded 
for CNN, while for each CNN+ model, earnings images are shaded according to one of three earnings 
quality measures (all scaled by lagged assets): CFO (cash flow from continuing operations), IBCA 
(adjusted income before extraordinary items), and OE (Dechow-Dichev operating earnings). The 
hedge portfolio returns based on CNN (CNN+) are computed as the return differences in 63-day buy-
and-hold abnormal returns (BHAR) after earnings announcements—including market-adjusted returns 
(MAR), size-adjusted returns (SAR), and factor-adjusted returns (FF4, FF6, HMXZ5, and DHS3)—
between the highest and lowest CNNBP (CNNBP+) deciles. CNNBP (CNNBP+) is the CNN buy 
probability (CNN+ buy probability) generated by CNN (CNN+). The CNNBP (CNNBP+) decile 
cutoffs are based on the distribution of the previous quarter’s CNNBP (CNNBP+). Panels E to G report 
the average differences in hedge portfolio returns between CNN and each of the three CNN+, 
respectively. See Appendix B for variable definitions. Newey and West [1987] t-statistics with three 
lags are reported in parentheses, and ***, **, and * indicate significance at the 1%, 5%, and 10% levels, 
respectively.
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Table 4.  
CNNBP/CNNBP+ and Post-Announcement Returns: Regression Analysis 

 (1) (2) (3) (4) 
Intercept 0.396 0.366 0.363 0.369 
 (0.878) (0.825) (0.822) (0.833) 
CNNBP 0.341    
 (0.544)    
CNNBP+  1.658*** 1.110** 1.059** 
  (3.509) (2.322) (2.438) 
SUE 0.918* 0.543 0.691 0.707 
 (1.881) (1.122) (1.508) (1.494) 
EA 1.207** 1.184** 1.148** 1.172** 
 (2.588) (2.503) (2.433) (2.521) 
TREND 0.560 0.398 0.481 0.457 
 (0.995) (0.724) (0.865) (0.812) 
PASTRET 0.077 0.022 0.050 0.057 
 (0.161) (0.045) (0.104) (0.119) 
PERSIST 0.086 0.022 0.020 0.015 
 (0.188) (0.049) (0.045) (0.034) 
VOL −0.362 −0.543 −0.620 −0.572 
 (−0.519) (−0.835) (−0.918) (−0.839) 
SIZE −1.853* −1.906* −1.872* −1.884* 
 (−1.753) (−1.768) (−1.739) (−1.736) 
BM 1.022 0.865 0.889 0.904 
 (0.926) (0.807) (0.838) (0.838) 
GP 2.374* 2.237 2.359* 2.325* 
 (1.702) (1.618) (1.709) (1.678) 
OP 0.873 0.600 0.770 0.808 
 (0.865) (0.609) (0.785) (0.820) 
OA 0.550 0.713 0.620 0.628 
 (0.696) (0.896) (0.790) (0.797) 
TA −0.931 −0.961 −0.935 −0.949 
 (−1.287) (−1.339) (−1.298) (−1.322) 
AG −0.417 −0.304 −0.359 −0.359 
 (−0.786) (−0.552) (−0.662) (−0.659) 
     
Adj. 𝑅𝑅2 0.023 0.023 0.023 0.023 
obs. 43,734 43,734 43,734 43,734 

The table presents results of Fama and MacBeth [1973] regressions in the out-of-sample period 
(2010Q3-2023Q2) using the Fama-French five-factor and momentum-adjusted buy-and-hold return 
(FF6) during the 63-day window ([+2, +64]) following earnings announcement date as the dependent 
variable. The CNN buy probability (CNNBP) in column 1 is generated by CNN, while the CNN+ buy 
probability (CNNBP+) in columns 2 to 4 is generated by the CFO, IBCA, and OE versions of CNN+, 
respectively. The control variables are standardized unexpected earnings (SUE), earnings acceleration 
(EA), trend in gross profitability (TREND), market capitalization (SIZE), book-to-market ratio (BM), 
past returns (RET[-30, -2]), earnings persistence (PERSIST), earnings volatility (VOL), gross 
profitability (GP), operating profitability (OP), total accruals (TA), operating accruals (OA), and asset 
growth (AG). All variables except for FF6 are converted into scaled ranks ranging from −0.5 to 0.5 
with a mean of zero. See Appendix B for variable definitions. Time-series averages of coefficients are 
multiplied by 100. Newey and West [1987] t-statistics with three lags are reported in parentheses. ***, 
**, and * indicate significance at the 1%, 5%, and 10% levels, respectively. 
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Table 5.  
Decomposing the Drift Predictability of CNNBP/CNNBP+: Univariate Analysis 

Panel A: CNN 
 Candidate variables 
 SUE EA TREND PASTRET PERSIST VOL SIZE BM GP OP OA TA AG 
Step 1: Regress FF6 on CNNBP 
Intercept 0.412 0.412 0.412 0.412 0.412 0.412 0.412 0.412 0.412 0.412 0.412 0.412 0.412 
 (0.907) (0.907) (0.907) (0.907) (0.907) (0.907) (0.907) (0.907) (0.907) (0.907) (0.907) (0.907) (0.907) 
CNNBP 1.281** 1.281** 1.281** 1.281** 1.281** 1.281** 1.281** 1.281** 1.281** 1.281** 1.281** 1.281** 1.281** 
 (2.617) (2.617) (2.617) (2.617) (2.617) (2.617) (2.617) (2.617) (2.617) (2.617) (2.617) (2.617) (2.617) 
Step 2: Regress CNNBP on a candidate variable 
Intercept -0.280 -0.380 -0.359 -0.298 -0.357 -0.281 -0.317 -0.319 -0.317 -0.317 -0.317 -0.316 -0.317 
 (-1.435) (-1.191) (-1.022) (-0.855) (-1.078) (-0.904) (-0.971) (-0.977) (-0.967) (-0.970) (-0.969) (-0.969) (-0.970) 
Candidate 44.200*** 29.108*** 16.127*** 2.429** 5.009*** 19.796*** -10.097*** 15.224*** -4.061*** -10.989*** -10.400*** -13.293*** -11.117*** 
 (31.333) (41.273) (11.999) (2.149) (4.561) (9.810) (-7.306) (17.067) (-2.831) (-4.876) (-10.810) (-10.151) (-10.430) 
Adj. R2 19.9% 8.8% 2.9% 0.3% 0.5% 4.7% 1.3% 2.5% 0.5% 2.0% 1.3% 2.1% 1.5% 
Step 3: Decompose the CNNBP coefficient from Step 1 
Candidate 0.818 0.475 0.122 0.001 -0.015 0.025 0.238 0.224 -0.077 -0.14 -0.047 0.024 0.14 
 63.8%*** 37.1%** 9.5%* 0.1% -1.2% 1.9% 18.6% 17.5% -6.0% -10.9% -3.7% 1.9% 10.9% 
 (2.815) (2.053) (1.719) (0.022) (-0.518) (0.122) (1.499) (1.350) (-1.029) (-1.140) (-0.532) (0.270) (1.370) 
Residual 0.463 0.806 1.159 1.28 1.296 1.256 1.043 1.057 1.358 1.421 1.328 1.257 1.141 
 36.2% 62.9%*** 90.5%*** 99.9%*** 101.2%*** 98.1%*** 81.4%*** 82.5%*** 106.0%*** 110.9%*** 103.7%*** 98.1%*** 89.1%*** 
 (1.442) (3.236) (12.203) (31.197) (34.227) (6.345) (6.213) (6.911) (15.392) (9.854) (13.140) (11.325) (9.559) 
Panel B: CNN+ (using CFO as the earnings quality measure) 
 Candidate variables 
 SUE EA TREND PASTRET PERSIST VOL SIZE BM GP OP OA TA AG 
Step 1: Regress FF6 on CNNBP+ 
Intercept 0.412 0.412 0.412 0.412 0.412 0.412 0.412 0.412 0.412 0.412 0.412 0.412 0.412 
 (0.907) (0.907) (0.907) (0.907) (0.907) (0.907) (0.907) (0.907) (0.907) (0.907) (0.907) (0.907) (0.907) 
CNNBP+ 2.088*** 2.088*** 2.088*** 2.088*** 2.088*** 2.088*** 2.088*** 2.088*** 2.088*** 2.088*** 2.088*** 2.088*** 2.088*** 
 (3.670) (3.670) (3.670) (3.670) (3.670) (3.670) (3.670) (3.670) (3.670) (3.670) (3.670) (3.670) (3.670) 
Step 2: Regress CNNBP+ on a candidate variable 
Intercept -0.049 -0.106 -0.129 -0.014 -0.151 -0.034 -0.087 -0.087 -0.084 -0.088 -0.086 -0.087 -0.086 
 (-0.199) (-0.324) (-0.330) (-0.039) (-0.445) (-0.103) (-0.259) (-0.259) (-0.250) (-0.262) (-0.254) (-0.257) (-0.256) 
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Candidate 35.983*** 16.662*** 18.246*** 5.219*** 4.742*** 8.483*** 0.913 0.797 12.042*** 9.737*** -13.048*** -3.209*** -5.673*** 
 (32.186) (23.101) (12.490) (5.701) (5.944) (4.248) (0.521) (0.984) (9.032) (5.505) (-12.843) (-2.929) (-5.801) 
Adj. R2 13.1% 3.0% 3.6% 0.4% 0.4% 1.4% 0.5% 0.1% 1.8% 1.4% 1.9% 0.3% 0.5% 
Step 3: Decompose the CNNBP+ coefficient from Step 1 
Candidate 0.655 0.295 0.123 0.008 -0.015 -0.157 -0.137 0.021 0.328 -0.108 -0.063 -0.117 0.046 
 31.4%*** 14.1%** 5.9%* 0.4% -0.7% -7.5% -6.6% 1.0% 15.7%** -5.2% -3.0% -5.6% 2.2% 
 (3.594) (2.496) (1.743) (0.181) (-0.458) (-1.528) (-0.838) (0.622) (2.266) (-0.590) (-0.676) (-1.127) (0.927) 
Residual 1.434 1.793 1.965 2.08 2.103 2.245 2.226 2.067 1.76 2.169 2.151 2.205 2.042 
 68.6%*** 85.9%*** 94.1%*** 99.6%*** 100.7%*** 107.5%*** 106.6%*** 99.0%*** 84.3%*** 105.2%*** 103.0%*** 105.6%*** 97.8%*** 
 (6.507) (11.609) (18.826) (27.845) (45.370) (17.916) (14.390) (43.947) (9.549) (14.332) (16.101) (23.643) (24.563) 
Panel C: CNN+ (using IBCA as the earnings quality measure) 
 Candidate variables 
 SUE EA TREND PASTRET PERSIST VOL SIZE BM GP OP OA TA AG 
Step 1: Regress FF6 on CNNBP+ 
Intercept 0.395 0.395 0.395 0.395 0.395 0.395 0.395 0.395 0.395 0.395 0.395 0.395 0.395 
 (0.899) (0.899) (0.899) (0.899) (0.899) (0.899) (0.899) (0.899) (0.899) (0.899) (0.899) (0.899) (0.899) 
CNNBP+ 1.716*** 1.716*** 1.716*** 1.716*** 1.716*** 1.716*** 1.716*** 1.716*** 1.716*** 1.716*** 1.716*** 1.716*** 1.716*** 
 (3.311) (3.311) (3.311) (3.311) (3.311) (3.311) (3.311) (3.311) (3.311) (3.311) (3.311) (3.311) (3.311) 
Step 2: Regress CNNBP+ on a candidate variable 
Intercept -0.246 -0.324 -0.348 -0.267 -0.331 -0.220 -0.275 -0.276 -0.273 -0.275 -0.273 -0.274 -0.274 
 (-0.954) (-0.865) (-0.844) (-0.649) (-0.845) (-0.621) (-0.711) (-0.715) (-0.707) (-0.712) (-0.708) (-0.710) (-0.711) 
Candidate 35.352*** 20.593*** 15.909*** 2.812** 5.528*** 25.667*** -8.660*** 6.654*** 3.140** -2.923 -14.070*** -9.966*** -8.407*** 
 (23.102) (26.074) (9.656) (2.499) (6.987) (10.858) (-5.740) (6.460) (2.573) (-1.423) (-10.762) (-6.832) (-8.618) 
Adj. R2 12.9% 4.6% 2.9% 0.3% 0.5% 7.5% 1.1% 0.6% 0.3% 0.7% 2.3% 1.3% 0.9% 
Step 3: Decompose the CNNBP+ coefficient from Step 1 
Candidate 0.626 0.347 0.104 0.001 0.001 -0.028 0.195 0.162 0.102 -0.12 -0.051 -0.022 0.103 
 36.5%*** 20.2%** 6.1% 0.1% 0.1% -1.6% 11.3%* 9.4% 5.9% -7.0% -2.9% -1.3% 6.0% 
 (3.332) (2.462) (1.617) (0.034) (0.030) (-0.109) (1.866) (1.645) (1.398) (-1.427) (-0.445) (-0.348) (1.560) 
Residual 1.09 1.368 1.612 1.714 1.715 1.743 1.521 1.554 1.614 1.836 1.766 1.737 1.613 
 63.5%*** 79.8%*** 93.9%*** 99.9%*** 99.9%*** 101.6%*** 88.7%*** 90.6%*** 94.1%*** 107.0%*** 102.9%*** 101.3%*** 94.0%*** 
 (5.112) (7.964) (19.772) (32.517) (30.012) (6.026) (9.834) (13.253) (17.782) (18.189) (13.682) (17.763) (13.944) 
Panel D: CNN+ (using OE as the earnings quality measure) 
 Candidate variables 
 SUE EA TREND PASTRET PERSIST VOL SIZE BM GP OP OA TA AG 
Step 1: Regress FF6 on CNNBP+ 
Intercept 0.394 0.394 0.394 0.394 0.394 0.394 0.394 0.394 0.394 0.394 0.394 0.394 0.394 
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Using Fama-MacBeth [1973] cross-sectional regressions, the relation between CNNBP (or CNNBP+) and the post-announcement 63-day Fama-French five-
factor and momentum-adjusted buy-and-hold returns (FF6) is decomposed into a component that is related to a candidate variable and a residual component. In 
Panel A, Step 1 regresses FF6 on CNNBP (i.e., FF6𝑖𝑖,𝑞𝑞+1 = 𝛼𝛼𝑞𝑞 + 𝛽𝛽𝑞𝑞CNNBP𝑖𝑖,𝑞𝑞 + 𝜀𝜀𝑖𝑖,𝑞𝑞+1). Step 2 regresses CNNBP on a candidate variable (i.e., CNNBP𝑖𝑖,𝑞𝑞 =
𝑎𝑎𝑞𝑞 + 𝛿𝛿𝑞𝑞Candidate𝑖𝑖,𝑞𝑞 + 𝜇𝜇𝑖𝑖,𝑞𝑞) to decompose CNNBP𝑖𝑖,𝑞𝑞 into two orthogonal components: the candidate component (𝛿𝛿𝑞𝑞Candidate𝑖𝑖,𝑞𝑞) and the residual component 

(𝑎𝑎𝑞𝑞 + 𝜇𝜇𝑖𝑖,𝑞𝑞). Step 3 decomposes the 𝛽𝛽𝑞𝑞 coefficient from Step 1 as: 𝛽𝛽𝑞𝑞 =  𝐶𝐶𝐶𝐶𝐶𝐶�FF6𝑖𝑖,𝑞𝑞+1,CNNBP𝑖𝑖,𝑞𝑞�
𝑉𝑉𝑉𝑉𝑉𝑉�CNNBP𝑖𝑖,𝑞𝑞�

=  𝐶𝐶𝐶𝐶𝐶𝐶�FF6𝑖𝑖,𝑞𝑞+1,𝛿𝛿𝑞𝑞Candidate𝑖𝑖,𝑞𝑞�
𝑉𝑉𝑉𝑉𝑉𝑉�CNNBP𝑖𝑖,𝑞𝑞�

+ 𝐶𝐶𝐶𝐶𝐶𝐶�FF6𝑖𝑖,𝑞𝑞+1,�𝛼𝛼𝑞𝑞+𝜇𝜇𝑖𝑖,𝑞𝑞��
𝑉𝑉𝑉𝑉𝑉𝑉�CNNBP𝑖𝑖,𝑞𝑞�

=  𝛽𝛽𝑞𝑞
C + 𝛽𝛽𝑞𝑞

𝑅𝑅 . 

The time-series average of 𝛽𝛽𝑞𝑞
C divided by the time-series average of 𝛽𝛽𝑞𝑞 measures the fraction of the CNNBP’s drift predictability explained by the candidate 

variable and the time-series average of 𝛽𝛽𝑞𝑞
𝑅𝑅 divided by the time-series average of 𝛽𝛽𝑞𝑞 measures the fraction of the CNNBP’s drift predictability unexplained by 

the candidate variable, with the standard errors of the fractions being determined using the multivariate delta method. In Panels B to D, we replace CNNBP 
with CNNBP+ generated by the CFO, IBCA, and OE versions of the CNN+ model, respectively, and perform the Steps 1 to 3 in an analogous manner. The 
candidate variables include standardized unexpected earnings (SUE), earnings acceleration (EA), trend in gross profitability (TREND), market capitalization 
(SIZE), book-to-market ratio (BM), past returns (RET[-30, -2]), earnings persistence (PERSIST), earnings volatility (VOL), gross profitability (GP), operating 
profitability (OP), total accruals (TA), operating accruals (OA), and asset growth (AG). All variables except for FF6 are converted into scaled ranks ranging 
from −0.5 to 0.5 with a mean of zero. See Appendix B for variable definitions. Time-series averages of coefficients are multiplied by 100 and reported with t-
statistics in parentheses. ***, **, and * indicate significance at the 1%, 5%, and 10% level, respectively. 

 (0.894) (0.894) (0.894) (0.894) (0.894) (0.894) (0.894) (0.894) (0.894) (0.894) (0.894) (0.894) (0.894) 
CNNBP+ 1.760*** 1.760*** 1.760*** 1.760*** 1.760*** 1.760*** 1.760*** 1.760*** 1.760*** 1.760*** 1.760*** 1.760*** 1.760*** 
 (3.905) (3.905) (3.905) (3.905) (3.905) (3.905) (3.905) (3.905) (3.905) (3.905) (3.905) (3.905) (3.905) 
Step 2: Regress CNNBP+ on a candidate variable 
Intercept -0.211 -0.295 -0.307 -0.279 -0.298 -0.200 -0.251 -0.253 -0.251 -0.252 -0.250 -0.251 -0.251 
 (-0.828) (-0.781) (-0.756) (-0.682) (-0.763) (-0.571) (-0.653) (-0.657) (-0.650) (-0.654) (-0.650) (-0.651) (-0.652) 
Candidate 36.416*** 20.014*** 18.358*** 3.105*** 5.343*** 25.192*** -10.173*** 6.771*** 3.750*** -4.089** -16.517*** -11.235*** -8.986*** 
 (25.742) (29.071) (11.416) (2.916) (6.043) (10.532) (-6.675) (6.998) (2.948) (-2.139) (-11.110) (-7.606) (-9.151) 
Adj. R2 13.4% 4.2% 3.7% 0.3% 0.5% 7.3% 1.4% 0.6% 0.4% 0.7% 3.1% 1.6% 1.0% 
Step 3: Decompose the CNNBP+ coefficient from Step 1 
Candidate 0.656 0.339 0.134 -0.013 -0.006 -0.009 0.224 0.164 0.127 -0.105 -0.058 0.004 0.099 
 37.3%*** 19.3%** 7.6%* -0.7% -0.3% -0.5% 12.7%* 9.3%* 7.2%* -6.0% -3.3% 0.3% 5.6% 
 (3.563) (2.583) (1.944) (-0.295) (-0.178) (-0.040) (1.88 0) (1.856) (1.738) (-1.247) (-0.444) (0.064) (1.470) 
Residual 1.104 1.421 1.626 1.773 1.766 1.77 1.536 1.596 1.633 1.865 1.818 1.756 1.661 
 62.7%*** 80.7%*** 92.4%*** 100.7%*** 100.3%*** 100.5%*** 87.3%*** 90.7%*** 92.8%*** 106.0%*** 103.3%*** 99.7%*** 94.4%*** 
 (5.344) (9.684) (16.390) (34.286) (26.433) (7.104) (10.217) (12.660) (17.547) (15.949) (12.617) (16.898) (15.260) 
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Table 6:  
Decomposing the Drift Predictability of CNNBP/CNNBP+: Multivariate Analysis 

 CNN  CNN+ (using CFO as the earnings 
quality measure) 

CNN+ (using IBCA as the earnings 
quality measure) 

CNN+ (using OE as the earnings 
quality measure) 

 Coeff. Fraction t-stat Coeff. Fraction t-stat Coeff. Fraction t-stat Coeff. Fraction t-stat 
Step 1: Regress FF6 on CNNBP (or CNNBP+) 
Intercept 0.412  (0.907) 0.412  (0.907) 0.395  (0.899) 0.394  (0.894) 
CNNBP 1.281**  (2.617)          
CNNBP+    2.088***  (3.670) 1.716***  (3.311) 1.760***  (3.905) 
Step 2: Regression CNNBP/CNNBP+ on candidate variables 
Intercept -0.313*  (-1.686) -0.037  (-0.137) -0.281  (-1.167) -0.256  (-1.082) 
SUE 39.904***  (33.860) 32.771***  (37.964) 32.520***  (26.375) 33.385***  (27.930) 
EA 11.419***  (14.648) 2.408***  (3.312) 6.418***  (7.600) 5.464***  (7.134) 
TREND 3.296***  (4.727) 10.861***  (12.907) 6.657***  (8.611) 8.739***  (10.731) 
PASTRET 0.971  (1.614) 1.910***  (5.137) 1.258**  (2.457) 1.453***  (2.839) 
PERSIST 6.199***  (6.903) 5.060***  (9.413) 6.396***  (10.157) 6.022***  (9.471) 
VOL 24.780***  (16.766) 15.116***  (10.391) 31.176***  (18.492) 29.333***  (16.226) 
SIZE 3.475***  (2.849) 2.628*  (1.911) 2.141*  (1.844) 0.456  (0.369) 
BM 20.550***  (22.906) 10.940***  (11.308) 14.546***  (17.422) 14.295***  (15.732) 
GP 1.824  (1.407) 8.162***  (6.536) 3.777***  (3.259) 4.893***  (3.483) 
OP 2.493**  (2.491) 15.185***  (17.377) 9.821***  (10.380) 8.643***  (11.384) 
OA -2.850***  (-4.744) -9.911***  (-18.425) -6.731***  (-8.666) -9.365***  (-9.250) 
TA -4.881***  (-10.087) 1.195  (1.557) -1.683**  (-2.180) -1.218*  (-1.764) 
AG -1.996**  (-2.481) -3.522***  (-4.362) -2.538***  (-3.209) -2.336***  (-3.986) 
Adj. R2 32.5%   21.5%   26.4%   27.2%   
Step 3: Decompose the CNNBP/CNNBP+ coefficient from Step 1 
SUE 0.756 59.1%*** (2.817) 0.598 28.6%*** (3.575) 0.592 34.5%*** (3.337) 0.617 35.1%*** (3.524) 
EA 0.183 14.3%* (1.952) 0.063 3.0% (1.656) 0.117 6.8%** (2.009) 0.097 5.5%* (1.922) 
TREND 0.029 2.2% (1.413) 0.064 3.1% (1.385) 0.035 2.1% (1.095) 0.061 3.5%* (1.676) 
PASTRET −0.017 −1.3% (−0.587) −0.008 −0.4% (−0.325) −0.018 −1.1% (−0.637) −0.027 −1.5% (−0.981) 
PERSIST −0.031 −2.4% (−0.848) −0.022 −1.1% (−0.650) −0.015 −0.9% (−0.441) −0.020 −1.2% (−0.596) 
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VOL −0.021 −1.7% (−0.089) −0.154 −7.4% (−1.383) −0.044 −2.6% (−0.144) −0.030 −1.7% (−0.109) 
SIZE −0.148 −11.5% (−1.176) −0.113 −5.4% (−0.842) −0.083 −4.9% (−1.050) −0.062 −3.5% (−0.928) 
BM 0.296 23.1% (1.274) 0.156 7.5% (1.081) 0.248 14.5% (1.449) 0.244 13.9% (1.477) 
GP 0.083 6.5% (1.489) 0.261 12.5%** (2.568) 0.131 7.7%* (1.980) 0.162 9.2%** (2.077) 
OP −0.041 −3.2% (−0.805) −0.005 −0.2% (−0.029) −0.017 −1.0% (−0.160) −0.020 −1.2% (−0.244) 
OA −0.062 −4.8% (−1.235) −0.027 −1.3% (−0.301) −0.025 −1.5% (−0.380) −0.049 −2.8% (−0.582) 
TA 0.034 2.6% (0.839) −0.035 −1.7% (−0.639) −0.018 −1.1% (−0.484) 0.009 0.5% (0.435) 
AG 0.033 2.5% (0.745) 0.045 2.2% (1.136) 0.042 2.5% (1.239) 0.041 2.3% (1.506) 
Residual 0.187 14.6% (0.407) 1.266 60.6%*** (4.820) 0.771 44.9%*** (2.983) 0.736 41.8%** (2.399) 
Total 1.281*** 100.0% (2.617) 2.088*** 100.0% (3.670) 1.716*** 100.0% (3.311) 1.760*** 100.0% (3.905) 

Using Fama-Macbeth [1973] cross-sectional regressions, the relation between CNNBP (or CNNBP+) and the post-announcement 63-day Fama-
French five-factor and momentum-adjusted buy-and-hold returns (FF6) is decomposed into 13 components each related to a candidate variable 
and a residual component. The standard errors of the fractions of the relation explained are determined using the multivariate delta method. The 
13 candidate variables are standardized unexpected earnings (SUE), earnings acceleration (EA), trend in gross profitability (TREND), market 
capitalization (SIZE), book-to-market ratio (BM), past returns (RET[−30, −2]), earnings persistence (PERSIST), earnings volatility (VOL), gross 
profitability (GP), operating profitability (OP), total accruals (TA), operating accruals (OA), and asset growth (AG). All variables except for FF6 
are converted into scaled ranks ranging from −0.5 to 0.5 with a mean of zero. See Appendix B for variable definitions. Time-series averages of 
coefficients are multiplied by 100 and reported with t-statistics in parentheses. ***, **, and * indicate significance at the 1%, 5%, and 10% levels, 
respectively. 

 


