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Abstract

We study the drift-predicting information contained in visualized earnings, by plotting firms’

time series of quarterly earnings in bar charts and employing a deep learning algorithm. We

use the convolutional neural network (CNN) to extract features that are most predictive of

post-earnings announcement drift from these images. In out-of-sample tests, these features

significantly predict post-earnings announcement returns. The predictability is incremental

to that of the usual drift determinants, exhibits time stability, cannot be explained by

a battery of risk controls or return anomalies, appears to be consistent with investors

missing predictable implications of these features for future earnings growth, and is robust

to alternative modeling choices.
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“If I can’t picture it, I can’t understand it.” –Albert Einstein

1 Introduction

Human brains process visual information faster than textual or numerical information,

with visual stimuli being recognized and interpreted almost instantaneously. In addition,

visualizations such as graphs, charts, and infographics can simplify complex data and reveal

unanticipated patterns that are not readily apparent in a table of numbers. For example,

earnings charts are usually presented during firms’ earnings call conferences to showcase

earnings performance in the past few quarters, and are widely used by investors and analysts

to evaluate firms’ future prospects. In this study, we examine whether one can extract

relevant information from visualized earnings data to predict post-earnings announcement

returns, with the help of artificial intelligence.

We transform firms’ historical quarterly earnings into bar charts and apply convolutional

neural network (CNN), a deep learning algorithm inspired by the human biological visual

system, to extract features that are most predictive of firms’ post-announcement performance.

CNN is capable of extracting features in a hierarchical manner, with early layers capturing

local features and deeper layers integrating these features to detect more complex and global

patterns. Our use of CNN closely resembles the image classification task in other CNN

applications. For example, CNN can be trained with many bird, cat, and dog images to

automatically learn features that best distinguish between the three animals.1 Then, one

1In particular, CNN learns to map the input images to their correct labels (bird, cat, or dog) by adjusting
its internal parameters (weights) to minimize the difference between its predictions and the actual labels.
We elaborate more on how CNN works, in Section 3.
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can apply the CNN stored parameters from the previous training phase, to a new image to

generate each label’s probability, which represents CNN-predicted likelihood for this image

to be a bird, cat, or dog image, respectively.

In our context, we are interested in examining whether CNN can be employed to learn

features containing drift-predicting information from visualized earnings data. To begin

with, for each firm announcing quarterly earnings from 1974Q1 to 2023Q2, we plot its most

recent eight quarterly earnings in a bar chart that visualizes the magnitude as well as the sign

of the earnings. Each earnings bar-chart image is paired with one of the three labels (“sell”,

“hold”, or “buy”) based on the relative performance of the firm’s 63-day post-announcement

buy-and-hold abnormal returns among the cross-section of firms in the same quarter. We

then train the CNN model with 124,413 earnings images in a 20-year in-sample period

(1974Q1 to 1993Q4) to automatically learn features that best distinguish between the three

assigned labels.

Next, we apply the CNN stored parameters from the previous training phase to each

earnings image after 1993 to generate the “CNN buy probability”. This is our key independent

variable, and can be thought of as the CNN-predicted likelihood for an image to be a “buy”

image when “sell” and “hold” options are available. We seek to use this variable to predict

the next 63 days of BHARs (i.e. post-earnings announcement drift). If certain features in

earnings images are strongly associated with post-earnings announcement drift, and CNN is

capable of detecting these features (which we label CNN buy features) during the training

process, then firms with higher CNN buy probability should experience higher post-earnings

announcement drift. To test this, in each quarter we sort firms into decile portfolios based
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on their CNN buy probability2, and then examine the average 63-day post-announcement

buy-and-hold abnormal returns for each decile portfolio in the out-of-sample period from

1994Q3 to 2023Q2.

We find that when moving from the lowest decile to the highest decile of CNN buy

probability, the average 63-day post-announcement buy-and-hold abnormal returns monotonically

increase. Importantly, firms in the highest CNN buy probability decile outperform firms in

the lowest CNN buy probability decile by 3.6% (t-statistic = 7.213) using the market-adjusted

buy-and-hold returns, with the return differential being positive in 99 out of 116 quarters.

Also importantly, the lowest CNN buy decile associates with significantly negative BHARs,

creating the more typical view of post-earnings announcement drift (positive surprises followed

by positive drift and negative surprises followed by negative drift). This offers a clearer link to

the original drift-puzzle than many of the follow-on papers which had difficulty documenting

the negative drift part of the picture (e.g. Garfinkel and Sokobin, 2006).

Our results are robust to alternative measures of buy-and-hold abnormal returns, such

as size-adjusted buy-and-hold returns or buy-and-hold returns adjusted by factor models

including the Fama-French four- and six-factor models (Fama and French, 1993; Carhart,

1997; Fama and French, 2015; Fama and French, 2018), the q5-model (Hou et al., 2015;

Hou et al., 2021), and the risk-and-behavioral model (Daniel et al., 2020). Hence, the CNN

model’s ability to detect drift-predicting features from earnings images cannot be attributed

to existing factors.

We next compare the drift-predicting power of CNN buy features to those of the well-known

2where the cutoffs are based on the distribution of the previous quarter’s CNN buy probability to prevent
hindsight bias
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determinants of post-earnings announcement drift, including the standardized unexpected

earnings (Ball and Brown, 1968; Bernard and Thomas, 1989; Foster et al., 1984), earnings

acceleration (He and Narayanamoorthy, 2020), trend in gross profitability (Akbas et al.,

2017), market capitalization (Fama and French, 1992, 1993), book-to-market ratio (Fama

and French, 1992, 1993), earnings announcement return (Foster et al., 1984; Chan et al.,

1996), pre-announcement return (Carhart, 1997), earnings persistence (Francis et al., 2004),

earnings volatility (Cao and Narayanamoorthy, 2012), gross profitability (Novy-Marx, 2013),

operating profitability (Ball et al., 2016), operating accruals (Sloan, 1996; Hribar and Collins,

2002), total accruals (Richardson et al., 2005), and asset growth (Cooper et al., 2008). Using

univariate portfolio analysis, we find the post-announcement return differential between the

highest and lowest deciles sorted on each of the 14 firm characteristics is smaller in magnitude

compared to that sorted on the CNN buy probability.

We proceed to examine whether the drift-predicting power of the CNN buy features

shares resemblance with that of the firm characteristics mentioned above. In two-way 5× 5

sorting analysis, we find that the drift-predicting ability of the CNN buy features persists in

the middle to highest SUE quintiles as well as all quintiles of the other firm characteristics.

This suggests that CNN buy features are mostly distinct from existing firm characteristics

known to predict drift. Then we simultaneously control for these other explanators of

drift, by running quarterly weighted Fama and MacBeth (1973) regressions of post-earnings

announcement drift on the CNN buy probability and the 14 firm characteristics. The

coefficient on the CNN buy probability is positive and highly significant, indicating that

the CNN buy features provides incremental predictability for post-earnings announcement

drift when controlling for well-known extant determinants.
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Since the positive relation between CNN buy probability and post-earnings announcement

drift cannot be explained by risk and known anomalies, we proceed to explore the nature of

CNN buy features and the source of their drift-predicting power. In particular, we correlate

CNN buy probability with several firm characteristics that have each shown prior evidence of

return predictability. This suggests that the CNN model is capable of discerning meaningful

return-predicting information solely from historical earnings represented in the form of an

image.

In addition, we show that the non-linear transformations of CNN impart explanatory

power. In particular, a regression of the CNN buy probability on the most recent eight

quarterly earnings shows that historical earnings collectively explain 30% of the variation in

CNN buy probability, suggesting that most of the variation in CNN buy probability is driven

by nonlinear transformations of the underlying historical earnings data.

We then explore the nature of the price relevant information in CNN buy features that

is apparently missed by the market, leading to the post-earnings announcement drift. We

hypothesize that the CNN buy features have implications for future earnings growth and

investors do not fully incorporate these implications in a timely fashion. This interpretation

is in line with Bernard and Thomas, 1989, but is also complementary given the importance

of non-linear transformations that CNN allows. Moreover, to the extent that arbitrageurs

were expected to eliminate the original trading rules built on Bernard and Thomas, 1989,

our results offer potential explanation for the persistence of the drift phenomenon.

As preliminary evidence, we find that CNN buy probability positively predicts one-quarter-ahead

earnings growth as well as three-day abnormal returns around the next earnings announcement
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date, controlling for past earnings growth and other firm characteristics.3 Then we conduct

a formal market efficiency test, the Mishkin test (Mishkin, 1983; Abel and Mishkin, 1983), to

show that the drift-predicting ability of CNN buy features likely manifests because investors

underestimate the implications of CNN buy features for future earnings growth.4

We perform a battery of additional analyses as robustness checks. First, we find that

employing CNN predictions in a more conservative monthly-rebalancing long-short strategy

yields a monthly return of around 1%. Second, we show that the out-of-sample performance

of CNN predictions is insensitive to various model specifications, mitigating the concern that

certain model hyperparameters are driving the results. We also train a one-dimensional CNN

model with firms’ time-series of raw earnings data and document that the out-of-sample

drift-predicting performance is inferior to that of our two-dimensional CNN model, thus

emphasizing the importance of image representation.

Our study make several contributions to the literature. First, we contribute to a growing

literature studying the applications of machine learning techniques in asset pricing. In

particular, machine learning can efficiently combine information in a large set of characteristics

to predict cross-sectional stock returns (Rapach et al., 2013; Kelly et al., 2019; Feng et al.,

2020; Freyberger et al., 2020; Kozak et al., 2020; Gu et al., 2020; Gu et al., 2021; Leippold

et al., 2022; Cao et al., 2024; Chen et al., 2024; Murray et al., 2024), mutual fund alphas

(DeMiguel et al., 2023; Kaniel et al., 2023), hedge fund returns (Wu et al., 2021), bond risk

premiums (Bianchi et al., 2021; Kelly et al., 2023), and option returns (Büchner and Kelly,

3We use the standardized unexpected earnings (SUE) to calculate the earnings growth measure.
4Prior studies employing the Mishkin test framework include Sloan (1996), Dechow and Sloan (1997),

Rangan and Sloan (1998), Collins and Hribar (2000), Narayanamoorthy (2006), Cao and Narayanamoorthy
(2012), Chen and Shane (2014), Hui et al. (2016), Ma and Markov (2017), and He and Narayanamoorthy
(2020).
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2022; Bali et al., 2023). A key differentiating feature of our CNN approach from the above

studies is that we do not require an expansive list of input variables for training. Instead,

our input is a two-dimensional image plotted using the most recent eight quarterly earnings,

and the out-of-sample drift-predicting performance is still significant.5

We particularly contribute to a burgeoning literature employing CNN to extract relevant

information from images. For example, Obaid and Pukthuanthong (2022) extract information

from a large sample of news media images and translate that information into a daily investor

sentiment index. Jiang et al. (2023) extract return-predicting information from stock-level

charts depicting daily open, close, high, low prices, as well as trading volume and average

prices over a past period to forecast future returns. Motivated by the two studies, we utilize

CNN to examine whether certain features in earnings images are predictive of post-earnings

announcement drift, thus also contributing to a vast literature studying the relation between

earnings-related characteristics and post-earnings announcement performance. However, a

notable distinction between our paper and these studies (e.g., Ball and Brown, 1968; Foster

et al., 1984; Bernard and Thomas, 1989; Chan et al., 1996; Rangan and Sloan, 1998; Francis

et al., 2004; Jegadeesh and Livnat, 2006; Livnat and Mendenhall, 2006; Narayanamoorthy,

2006; Kishore et al., 2008; Cao and Narayanamoorthy, 2012; Akbas et al., 2017; Kausar,

2018; He and Narayanamoorthy, 2020) lies in the approach to locate the earnings-related

characteristics. In particular, we do not resort to subjective feature-engineering, but instead

rely on CNN to automatically detect features that are most indicative of post-earnings

announcement drift from earnings images in the training phase.

5Transforming data from one-dimensional to two-dimensional can potentially create more nuanced
information, thus adding flexibility in prediction tasks when the input data is scarce.
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Our paper also sheds light on a recent literature examining the information value in

visualized data. For example, Nekrasov et al. (2022) find that visuals in firms’ Twitter

earnings announcements are associated with more retweets, representing increased attention

to the earnings news. Moss (2022) find that retail investors use their visual perception

of earnings surprise displayed on Robinhood rather than the unexpected earnings scaled

by stock price in their investment decisions. Hu and Ma (2023) quantify persuasion in

visual, vocal, and verbal dimensions in start-up pitch videos, and find that passionate

and warm pitches significantly increase funding probability. Cao et al. (2024) examine the

visual information in corporate executive presentations and examine how market participants

respond to such information. Christensen et al. (2024) document a significant increase in

the disclosure of infographics in 10-K filings over time, and investigate the relation between

the use of infographics and uncertainty in capital markets. Gu et al. (2024) find that a daily

firm-level investor sentiment measure based on graphics interchange format images (GIFs) in

postings about firms on Stocktwits.com is positively correlated with same-day stock returns

while predicting stock return reversals in the following two weeks. Our paper, on the other

hand, proposes a universal approach to visualize a firm’s time-series of quarterly earnings into

a bar-chart image that accounts for both the sign and magnitude of earnings as an input to

machines. To the best of our knowledge, we are the first to systematically visualize earnings

data and extract information from earnings images to predict post-earnings announcement

drift.

The rest of the paper is structured as follows. Section 2 describes the data and variables.

Section 3 describes how we generate earnings images, assign labels, and train the CNN model.

Section 4 presents the out-of-sample drift-predicting performance of the CNN model. Section
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5 examines the nature of CNN predictions and the source of their drift-predicting power.

Section 6 performs robustness checks. Finally, Section 7 concludes the paper.

2 Data and Variables

We focus on U.S. common stocks traded on NYSE, AMEX, and NASDAQ, and obtain

data from Compustat and CRSP. First, we collect Compustat firm-quarters whose earnings

announcement date (Compustat item RDQ) is between January 1974 and June 2023, and

delete observations with missing RDQ in the most recent eight quarters (quarters q−7 to q).

Next, we apply filters in He and Narayanamoorthy (2020) to eliminate announcements that

are potentially subject to data errors. In particular, we delete observations if in the most

recent eight quarters, a firm has (i) more than one earnings announcement on any date (ii)

earnings announcement date within 30 days of a previous earnings announcement date, or

(iii) earnings announcement either prior to or more than 180 days after the corresponding

fiscal period-end.

We require a firm to have non-missing earnings in the most recent eight quarters and

a CRSP daily price higher than one dollar at the most recent earnings announcement date

(quarter q). We use income before extraordinary items (Compustat item IBQ) as earnings.

Financial and utility firms with SIC codes from 6000 to 6999 and from 4900 to 4949

are excluded. In addition, firms are required to have non-missing market capitalization

(SIZE) and non-negative book-to-market ratio (BM), and have at least 90 non-missing

daily return observations in the [−120,−31] window relative to the current quarter earnings

announcement date. We are left with 404,635 firm-quarter observations after applying all
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the above filters.

Next, we define the in-sample dataset and the out-of-sample dataset. The in-sample

dataset consists of 124,413 firm-quarter observations between January 1974 to December 1993

(4,548 firms; 80 quarters), and is for CNN model training and validation. The complement

out-of-sample dataset is for predicting and testing the out-of-sample CNNmodel performance,

and thus serves as the dataset for all empirical analyses throughout the paper. It consists

of 240,844 firm-quarter observations between July 1994 to December 2023 with non-missing

firm characteristics (7,527 firms; 116 quarters).6

We summarize the definitions of all the variables used in this study, in the Appendix. To

mitigate the impact of outliers, we transform most variables into decile ranks (numbered 0

to 9, from low to high) following prior research (e.g., Rangan and Sloan, 1998; Livnat and

Mendenhall, 2006; Garfinkel and Sokobin, 2006).7 The cutoff points for quarterly variables

are based on the distribution of those quarterly variables in the previous quarter. The

cutoff points for annual variables from July in year t to June in year t+ 1 are based on the

distribution of those annual variables at the end of June in year t. Then, we convert all the

decile ranks to scaled ranks by dividing by 9 and subtracting 0.5. The resulting scaled ranks

vary from −0.5 to 0.5 with a mean of zero and a range of one. This variable transformation

approach is to facilitate comparison of the economic magnitudes of firm characteristics. For

6The firm characteristics include SUE, EA, TREND, RET[−1, 1], RET[−30,−2], PERSIST, VOL, GP,
OP, OA, TA, and AG. Along with BM and SIZE, these firm characteristics are used as comparing/control
variables throughout the paper. See Appendix for variable definitions. In addition, we address the reasons
to set up a six-month lag between the end of the in-sample dataset and the out-of-sample dataset in Section
4.1. In addition, our empirical results are robust to using an in-sample (out-of-sample) period consisting of
60 quarters (136 quarters) or 100 quarters (96 quarters).

7Variables that are not transformed into decile ranks are the six measure of the 63-day post-announcement
buy-and-hold abnormal return (BHAR), including market-adjusted return (MAR), size-adjusted return
(SAR), and four factor-adjusted returns (FF4, FF6, HMXZ5, and DHS3).
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example, the coefficient on a variable of interest (in scaled rank) in a return regression

represents the return from a zero investment strategy of going long on the highest variable

decile and short on the lowest variable decile.

3 The CNN Model

In this section, we introduce the CNN training procedure, which can be regarded as an

image classification task. First, we transform firms’ times series of quarterly earnings into

bar charts. Then, we assign labels to each earnings bar-chart image based on the relative

performance of its post-earnings announcement drift among the cross-section of firms in the

same quarter. Finally, we train the CNN model with the 124,413 earnings images in the

in-sample period (1974Q1 to 1993Q4, 80 quarters) to “learn” drift-predicting information.

3.1 Generating earnings images

We begin by plotting the most recent eight quarterly earnings in bar charts. Following Jiang

et al. (2023), we generate black-and-white rather than colored images for simplicity and

uniformity. Each black-and-white image is of size 24× 24 pixels, which is recognized by the

machine as a 24 × 24 matrix of 0 (black pixel) and 255 (white pixel). We use black as the

background color and white as the color for earnings, and the constant image size setup is

for better comparison of earnings patterns across different firms in different quarters.

Each quarter occupies 24 × 3 pixels in the image, and quarterly earnings are plotted as

“white bars” in the middle column of each quarter. In particular, let E1, E2, ..., E8 denote

the most recent eight quarterly earnings corresponding to quarter q−7, q−6, ..., q, EMAX and
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EMIN denote the maximum and minimum of the eight quarterly earnings, and r() denote the

function that rounds the input value to the nearest whole number. We set the bottom-left

vertex of the image as the origin of a two-dimensional coordinate system, so a rectangular

area in the image can be represented as ([x1, x2], [y1, y2]). Next, we classify firms’ most recent

eight quarterly earnings into one of the three types, determine the values corresponding to

the top and bottom of the image, and plot each quarterly earnings into bars accordingly.

The three types are as follows:

• Type I (EMIN ≥ 0; the most recent eight quarterly earnings are all non-negative): In

this case, we set EMAX and 0 as the top and bottom of the image, respectively. Ei is

plotted as the area of

([
3i− 2, 3i− 1

]
,

[
0, r(24 ∗ Ei

EMAX

)

])
, (1)

for i = 1, ..., 8. Figure 1 displays an example earnings image of this type. The maximum

earnings is E7 and thus it occupies a whole column. All other quarterly earnings are

plotted upward, and their heights are determined using E7 as the reference point.

• Type II (EMAX > 0 and EMIN < 0; the maximum quarterly earnings is positive while

the minimum earnings is negative): In this case, EMAX and EMIN coincide with the top

and bottom of the image, respectively. The implicit “zero-earnings line” corresponds
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to r(24∗ −EMIN

EMAX−EMIN
), and Ei is plotted above or below the zero-earnings line as follows:


[
3i− 2, 3i− 1

]
,
[
r(24 ∗ −EMIN

EMAX−EMIN
), r(24 ∗ −EMIN

EMAX−EMIN
) + r(24 ∗ Ei

EMAX−EMIN
)
]

if Ei > 0,[
3i− 2, 3i− 1

]
,
[
r(24 ∗ −EMIN

EMAX−EMIN
)− r(24 ∗ −Ei

EMAX−EMIN
), r(24 ∗ −EMIN

EMAX−EMIN
)
]

if Ei ≤ 0,

(2)

for i = 1, ..., 8. Figure 2 displays an example earnings image of this type. Here we see

the advantage of using bar charts as opposed to line graphs when plotting earnings.

Bars can represent positive, zero, or negative earnings without further specifying

numbers on the vertical axis. Positive earnings are plotted upward while negative

earnings are plotted downward, and the bar lengths (in pixels) are computed as the

rounded value of 24 multiplied by the absolute values of Ei scaled by EMAX − EMIN.

• Type III (EMAX ≤ 0; the most recent eight quarterly earnings are all non-positive): In

this case, 0 and EMIN coincide with the top and bottom of the image, respectively. Ei

is plotted as the area of

[
3i− 2, 3i− 1

]
,

[
24− r(24 ∗ Ei

EMIN

), 24

]
, (3)

for i = 1, ..., 8. Figure 3 displays an example earnings image of this type. The minimum

earnings is E5 and thus it occupies a whole column. All earnings are plotted downward,

and their heights are plotted using E5 as the reference point.

Note that in all three types, it is possible for Ei to be very close to zero after scaling and

thus does not occupy a full pixel in the image after rounding, i.e., y1 = y2.
8 In addition,

8One extreme case is that all eight quarterly earnings are very close to each other so that when plotting
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the distance between two neighboring earning of pixel between is greater than the distance

between the leftmost (or rightmost) earnings and the border of the image, which is consistent

with the default setup of a bar chart for most statistical software.

3.2 Assigning labels to earnings images

Next, we assign one of the three labels (“sell”, “hold”, or “buy”) to each firm’s earnings image

based on the firm’s 63-day post-announcement buy-and-hold abnormal return (BHAR).

There are different ways to define buy-and-hold abnormal returns, and we use market-adjusted

buy-and-hold returns (MAR).9 In particular, MARi,q+1 is defined as the difference between

the buy-and-hold return of firm i and that of the CRSP value-weighted market portfolio

over the windows [2, 64] in trading days relative to firm i’s earnings announcement date t in

quarter q:

MARi,q+1 =
64∏
τ=2

(1 +Ri,t+τ )−
64∏
τ=2

(1 +RM,t+τ ), (4)

whereRi is the delisting-adjusted return of firm i, RM is the return of the CRSP value-weighted

market return, and t is quarter q’s announcement date of firm i.10 The 63-day holding window

corresponds to the total number of trading days in three months. We follow previous studies

(Vega, 2006; Engelberg et al., 2012; Frank and Sanati, 2018) to compute MAR from day 2

to mitigate the impact of bid-ask bounce and other market microstructure effects, and our

results are robust to MAR defined using the trading window of [1, 63].

earnings on a bar chart, each earnings bar occupies a whole column. In this case, one cannot tell from the
image whether all earnings are positive or negative. However, we checked all earnings images and did not
find this extreme case.

9In untabulated tests, we find that the final CNN out-of-sample performance is robust to using alternative
definitions of abnormal returns such as size-adjusted or factor-adjusted returns in the label-assigning process.

10We replace missing delisting-adjusted returns with market returns, which is equivalent to reinvesting
any remaining proceeds in the market portfolio until the end of the holding period.
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Then, for each quarter in the in-sample period (1974Q1 to 1993Q4, 80 quarters), we

sort firms announcing earnings into terciles based on their 63-day MAR. The bottom, mid,

and top terciles are labeled “sell”, “hold”, and “buy”, respectively. Since the number of

training images for each label is about the same, we mitigate the class imbalance issue in

CNN training that arises with a disproportionate ratio of labels.

3.3 CNN architecture and training

In this section, we introduce the general algorithm of CNN and describe the architecture

and training process of our CNN model.

3.3.1 CNN architecture

A CNNmodel typically consists of multiple building blocks, with each building block consisting

of a convolutional layer and a pooling layer.11 In the convolutional layer, an input image

is first scanned by a set of convolutional filters to generate feature maps. Convolutional

filters, also known as kernels, are small matrices (usually of size 3× 3, 5× 5, or 7× 7 pixels)

that are applied over the input image’s pixels to detect features. The matrix elements in

convolutional filters are also known as “weights”, which will later be optimized during the

training process of the CNN model.

Then, a filter “scans” an image. It starts at the top-left corner of an image and moves

one pixel at a time. In CNN terminology, this corresponds to a “stride” of 1, which is

usually the default option in convolution. In each position, an element-wise multiplication is

performed between the filter and the corresponding patch of the input image. The products

11A building block may also consist of multiple convolutional layers, working sequentially (as in our case)
or in parallel (e.g., GoogLeNet (Szegedy et al., 2015)).
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are summed to a single value placed in the corresponding position of the feature map.12 The

process is repeated until the filter slides across the entire image, thus generating a complete

feature map. Then, the feature map passes through an activation function to introduce

non-linearity.13 Finally, in the pooling layer, pooling operations are applied to the feature

map produced by the convolutional layer (after activation) to retain the most important

information.

Figure 4 illustrates the operation of a CNN building block using a black-and-white 6× 6

pixels input image and a 3 × 3 pixels convolutional filter as an example. We first apply

“padding” to the input image by filling the absent neighbor elements with zeros for elements

at the image’s border, which helps preserve input dimensions and allow better edge feature

detection.14 Then, the convolutional layer applies the filter to the input image and produces

a feature map of size 6×6 pixels. In particular, we see that the top-left (bottom-right) 3×3

pixels patch of the input image, after applying the 3×3 pixels convolutional filter, eventually

becomes the top-left (bottom-right) element in the output feature map.

Next, we use “Leaky ReLU” as our activation function, which is a variation of the

conventional ReLU function.15 In particular, Leaky ReLU function transforms an input

value x to itself if x > 0 and 0.01x otherwise. We see that in Figure 4, Leaky ReLU function

is applied to every element of the feature map generated by the convolutional layer, and

12In CNN terminology, a feature map is the output produced after applying a convolutional filter to an
input image or the previous layer’s feature map.

13Without activation functions, CNNs would just consist of linear operations (matrix multiplication).
14Convolution operations without padding inevitably reduce the spatial dimensions of the output feature

maps.
15Compared to ReLU, Leaky ReLU allows a small, non-zero gradient for negative input values, which

helps to address the “dying ReLU” problem (where some neurons can become permanently inactive during
training) and thus enables more robust learning in neural networks. Interested readers may refer to Maas
et al. (2013), which is the first modern deep learning reference to Leaky ReLU.
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a feature map of the same size (6 × 6 pixels) is produced. Finally, we employ the most

commonly used 2 × 2 pixels max-pooling filter with a stride of 2 as our pooling operation

function. The max-pooling filter scans the feature map produced by the convolutional layer

(after activation), selects the maximum element in the 2×2 pooling window, and eventually

shrinks the height and width of the input feature map by half. Hence, max-pooling helps

preserve the most prominent features and reduce the spatial dimensions of the input feature

maps.

Having introduced the components of a CNN building block, we proceed to describe

the architecture of our CNN model and illustrate the details in Figure 5. In particular,

we use three building blocks, with the first block consisting of 64 convolutional filters of

7× 7 pixels, the second block consisting of 128 convolutional filters of 3× 3 pixels, and the

third block consisting of 256 convolutional filters of 3 × 3 pixels.16 Since our input images

are black-and-white with low resolution (24 × 24 pixels), we do not resort to an overly

complicated CNN model with too many blocks. In addition, we employ filters of 7× 7 pixels

in the first block to ensure that pixels of neighboring quarterly earnings in the initial input

earnings image can always be scanned simultaneously by the convolutional filters.17

After passing an image sequentially through the three building blocks, the CNN model

“flattens” the elements in the feature maps generated by the last block to a vector.18 Then,

16We follow the literature and increase the number of filters after each convolutional layer by a factor
of two. Following several well-known CNN architectures (e.g., VGGNet (Simonyan and Zisserman, 2014);
ResNet (He et al., 2016); DenseNet (Huang et al., 2017)), we employ 64 filters in the first convolution layer.
The choice of 64 filters provides a balance between model complexity and computational efficiency, making
it a popular choice.

17This filter size choice is based on the hypothesis that certain patterns in neighboring quarterly earnings
are helpful in predicting post-earnings announcement drift, although in Table 9 we find that the main results
are robust to using filters of 3× 3 or 5× 5 pixels in the first block.

18In the second and third building blocks where the input is a “stack” of feature maps instead of a single
image, the output will be a stack of feature maps as well. In particular, each filter is applied to the stack of
feature maps to perform convolution and eventually generate one feature map. Hence, the total number of
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the fully connected layer linearly transforms the elements in the vector to three scores (Z1,

Z2, and Z3) of the three labels (label 1 = “sell”, label 2 = “hold”, label 3 = “buy”).19

Finally, the Softmax function transforms these scores to three probabilities (ŷ1, ŷ2, ŷ3), where

0 ≤ ŷi ≤ 1 and
∑3

i=1 ŷi = 1.20 Hence, one can interpret ŷ3 as the CNN-predicted likelihood

of an earnings image to be classified as “buy” when the other two labels are available.

Throughout the paper, we refer to ŷ3 as the CNN buy probability (CNNBP).

3.3.2 CNN training

CNN training is about finding the optimized weights, i.e., parameters in convolutional filters

and the fully connected layer, to minimize model “loss” to a certain extent. We follow the

CNN literature to use the cross-entropy loss function as the loss function for minimization.

In particular, let y = [y1, y2, y3]
′ denote the label of an earnings image, which is either

[1, 0, 0]′, [0, 1, 0]′, or [0, 0, 1]′ corresponding to the sell, hold, and buy label, respectively. The

cross-entropy loss is computed as

Loss(y, ŷ) = −
3∑

i=1

yi ∗ log ŷi, (5)

where loss ∈ [0,∞) and smaller loss represents better CNN performance.

We closely follow the regularization procedures in Gu et al. (2020) and Jiang et al. (2023)

to train our CNN model.21 From the in-sample period (1974Q1 to 1993Q4, 80 quarters), we

feature maps in the output is equal to the number of filters. In CNN terminology, the number of stacks is
usually referred to as the “depth” of the input.

19The linear transformation also requires parameters to be estimated and optimized in the training process.
20The Softmax function converts the three scores into a probability distribution of three outcomes, i.e.,

ŷi =
eZi∑3

k=1 eZk
, for i = 1, 2, 3.

21Interested readers may refer to Gu et al. (2020) for detailed explanations on those modeling choices.
In particular, we use batch normalization (Ioffe and Szegedy, 2015) to mitigate the internal covariate shift
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randomly select 70% earnings images for training and the other 30% for validation, which

are labeled training dataset and validation dataset, respectively. First, 128 earnings images

(batch size = 128) are randomly selected from the training dataset and are passed through

the CNN model as described in Figure 5 to produce the average loss. The loss is propagated

back through the model to update the weights via stochastic gradient descent and the Adam

algorithm (Kingma and Ba, 2014) with a learning rate of 10−5. Next, the model randomly

selects 128 images from the remaining images in the training dataset to update the weights.

The iteration process stops when the model sees all earnings images in the training dataset.

We then apply those updated weights to the earnings images in the validation dataset to

compute validation loss. After completing the above process, we finish training an “epoch”.

Next, we start the training process again using the updated weights of the first epoch as

the initial weights, and eventually obtain updated weights and validation loss of the second

epoch. This training iteration process is halted only when the validation loss fails to improve

for two consecutive epochs, and the updated weights of the third-to-last epoch are stored as

the optimized weights.22 Then, we can then apply these optimized weights to a new earnings

image to generate CNN-predicted likelihood for a label of interest.

4 CNN Performance

In this section, we examine the out-of-sample performance of the CNN trained model. We

begin by applying the CNN-trained weights to the earnings images in 1994Q2 to 2023Q2 to

problem, choose Xavier initializers (Glorot and Bengio, 2010) as initial weights for model training, and apply
a 50% dropout rate (Srivastava et al., 2014) to the fully connected layer to prevent over-fitting. In Table 9,
we show that none of these choices affect our main results in Table 2.

22This technique is called ‘early stopping”, which is to prevent over-fitting to the training data.
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generate the CNN buy probability.23 Since CNN training can result in different outcomes

even when using the same architecture and dataset due to the stochastic nature of optimization

algorithms and the use of dropout rate, we train the same CNN model independently for ten

times (number of ensembles = 10) and then average the CNN buy probability, which helps

in achieving better accuracy and robustness.

If the CNN model is capable of extracting features that are indicative of post-earnings

announcement performance (CNN buy features) from earnings images, there should be a

positive relation between the CNN buy probability and post-earnings announcement drift.

Hence, we examine whether firms with higher CNN buy probability on average experience

higher post-earnings announcement drift, and whether such return-predictive power shares

resemblance with that of the existing return predictors.

4.1 Portfolio analysis: univariate sort

4.1.1 CNN buy probability and post-earnings announcement drift

In each quarter starting from 1994Q3, we assign firms announcing earnings into decile

portfolios based on their CNN buy probability, where the cutoffs are based on the distribution

of the previous quarter’s CNN buy probability. This approach (Foster et al., 1984; Bernard

and Thomas, 1989) is to prevent hindsight bias that classifies firms into portfolios based

on information not available at the time when a strategy is implemented. Hence, the

out-of-sample period is from 1994Q3 to 2023Q2 (a total of 116 quarters). Next, we compute

the average 63-day MAR for each CNN buy probability decile. If the CNN model is

23We start from 1994Q2 as late announcers in 1993Q4 require post-earnings announcement drift data in
1994Q1 to form labels.
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competent in detecting CNN buy features from earnings images, the average 63-day MAR

should be monotonically increasing when going from the lowest to highest CNN buy probability

deciles.

Table 2 presents the results. We find that when moving from the lowest decile to the

highest decile of CNN buy probability, the average CNN buy probability24 increases from

25.5% to 44.4%, and the average 63-day MAR increases monotonically from −0.6% to 3.0%.

The average difference in MAR is 3.6% (t-statistic = 7.213) in a quarter, which corresponds

to an annualized return exceeding 14%. Figure 6 further depicts the return differential for

each of the 116 quarters in the out-of-sample period. Specifically, the hedge return is positive

in 99 out of the 116 quarters (85.3%), indicating that the CNN out-of-sample performance

is stable over time.

We next study whether the return differential is robust to alternative risk adjustment

other than the market model by examining the relation between the CNN buy probability and

the 63-day size-adjusted buy-and-hold returns (SAR) as well as factor-adjusted buy-and-hold

returns. In particular, SAR is defined as the difference between the buy-and-hold return of

an announcing firm and that of a size-matched portfolio over the 63-day window ([2, 64])

following its earnings announcement date. We use the monthly NYSE size decile breakpoints

at the end of June in year t to determine the size-matched portfolio for a firm whose earnings

announcement date is between July of year t to June of year t+1. Monthly size breakpoints

and daily size portfolio returns are obtained from Kenneth French’s website.

To compute the 63-day factor-adjusted buy-and-hold returns, we replace RM,k in equation

(4) with daily returns R̂F,k predicted by factor models. To compute R̂F,k, we first estimate

24As a benchmark, random label assignments would generate a CNN buy probability of 1/3.

21



individual stock factor loadings by regressing returns on the factors on a 120-day rolling

window from t− 150 to t− 31 for each stock:

ri,t = αi + β′
iFt + ϵi,t, (6)

where ri,t is the excess return on stock i and Ft is a vector of factors. The predicted return

R̂F,k is then computed as β̂′
iFk.

25 In particular, we consider the factors in the Fama-French

four- and six-factor models (Fama and French, 1993; Carhart, 1997; Fama and French,

2015; Fama and French, 2018), the q5-model (Hou et al., 2015; Hou et al., 2021), and the

risk-and-behavioral model (Daniel et al., 2020). The 63-day factor-adjusted buy-and-hold

returns following an earnings announcement of these models are denoted FF4, FF6, HMXZ5,

and DHS3, respectively.26

Columns 4 to 10 in Table 2 present qualitatively similar results when we compute the

average 63-day SAR or factor-adjusted buy-and-hold returns (FF4, FF6, HMXZ5, and

DHS3) for each CNN buy probability decile. In particular, the return differential between the

highest and lowest CNN buy probability deciles range from 3.1% to 3.5%, with t-statistics all

statistically significant at the 1% level. Overall, Table 2 shows a significantly positive relation

between CNN buy probability and post-announcement buy-and hold abnormal returns that

25See, for example, Savor (2012) and Kapadia and Zekhnini (2019).
26Fama and French (2015) extends the Fama-French three-factor model (Fama and French, 1993) to

control for operating profitability (RMW) and investment (CMA). After the inclusion of a momentum factor
(Carhart, 1997), we have Fama-French four-factor and six-factor models (Fama and French, 2018). Hou
et al. (2015) propose the q-model to control for market, size (ME), investment (IVA), and profitability
(return on equity, ROE), and Hou et al. (2021) further includes an expected growth factor (EG) into the
q5-model. Daniel et al. (2020) propose a 3-factor risk-and-behavioral model that accounts for market,
long-term financing (FIN), and short-term earnings surprise (PEAD). Fama-French factors are obtained
from Kenneth French’s website, q5-model factors are obtained from Lu Zhang’s website, and DHS3 factors
are obtained from Lin Sun’s website.
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are robust to various risk adjustments.27

4.1.2 Firm characteristics and post-earnings announcement drift

Next, we examine whether the CNN buy probability is superior to the other usual determinants

of drift. We first consider three earning attributes: standardized unexpected earnings (Ball

and Brown, 1968; Bernard and Thomas, 1989; Foster et al., 1984), earnings acceleration

(He and Narayanamoorthy, 2020), and trend in gross profitability (Akbas et al., 2017).

In particular, standardized unexpected earnings (SUE) reflects earnings surprise based on

a seasonal random walk model, earnings acceleration (EA) captures the change in earnings

growth from one quarter to the next, and trend in gross profitability (TREND) characterizes

the recent path in a firm’s profitability in addition to the profit level.

In addition to the three earnings attributes, we also consider market capitalization (Fama

and French, 1992, 1993), book-to-market ratio (Fama and French, 1992, 1993), earnings

announcement return (Foster et al., 1984; Chan et al., 1996), pre-announcement return

(Carhart, 1997), earnings persistence (Francis et al., 2004), earnings volatility (Cao and

Narayanamoorthy, 2012), gross profitability (Novy-Marx, 2013), operating profitability (Ball

et al., 2016), total accruals (Richardson et al., 2005), operating accruals (Sloan, 1996; Hribar

and Collins, 2002), and asset growth (Cooper et al., 2008).

We follow the approach in the previous section to assign firms announcing earnings into

decile portfolios based on one of the 14 firm characteristics, where the cutoffs are based on the

distribution of the previous quarter’s firm characteristic. Then, we examine the difference

27The results are qualitatively the same if we assign earnings images with labels based on firms’ 21-day or
42-day post-announcement market-adjusted buy-and-hold returns, train the CNN model, and examine the
21-day or 42-day post-announcement buy-and-hold abnormal returns for CNN buy probability deciles.
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in the average 63-day MAR, SAR, and factor-adjusted buy-and-hold returns (FF4, FF6,

HMXZ5, and DHS3) between the highest and lowest deciles of each characteristic. If a

firm characteristic is more successful in predicting post-earnings announcement drift, the

difference in the post-announcement buy-and-hold abnormal returns between the highest

and lowest deciles sorted on the characteristic should be larger in magnitude.

Table 3 reports the results. The first row presents the return differential between the

highest and lowest deciles sorted on CNN buy probability (ranging from 3.1% to 3.6%),

which is the same as the last row in Table 2. In comparison, we find that the statistically

significant return differential ranges from 2.0% to 2.6% for SUE, from 2.1% to 2.4% for EA,

from 1.4% to 2.0% for TREND, from 3.3% to 3.8% for RET[−1, 1], from 1.6% to 2.5% for

BM, from 1.0% to 2.4% for GP, and from −1.9% to −1, 6% for AG. For the other firm

characteristics, the return differential fails to remain statistically significant at the 10% level

across all six abnormal return measures. Overall, Table 3 suggests that the drift-predicting

power of the CNN buy features is superior to that of the usual determinants of PEAD, while

being roughly on par with that of the earnings announcement return (RET[−1, 1]).

4.2 Portfolio analysis: double sorts

In this section, we examine whether the drift-predicting power of CNN buy features is distinct

from that of the 14 firm characteristics. In particular, we construct 5 × 5 portfolios sorted

independently (Liu et al., 2018; He and Narayanamoorthy, 2020) on the CNN buy probability

and one of the six firm characteristics (SUE, EA, TREND, RET[−1, 1], BM, GP, and AG).

Again, to alleviate hindsight bias, we use the distribution of each firm characteristic in the
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previous quarter to form the quintile cutoffs. Then, we examine the average 63-day MAR of

the 25 portfolios.28

We present the double sorts results in Table 4. Consistent with previous findings in the

literature, in Panel A we find that firms with high SUE outperform firms with low SUE by

a quarterly return of 0.9% to 2.5% depending on the CNN buy probability quintile. On the

other hand, the return differential between the high and low CNN buy probability quintiles is

significantly positive across medium to high SUE quintile while being insignificantly positive

in the bottom two quintiles. This finding indicates that the CNN buy features exhibit

incremental drift-predicting power for medium to high SUE firms, while this predictive ability

appears to be subsumed by the SUE effect for low SUE firms.

In Panel B we present the analogous two-way sorting based on firms’ earnings acceleration.

We find that the average difference in 63-day MAR between the top and bottom CNN buy

probability quintiles ranges from 1.6% to 5.4% (t-statistics between 2.711 and 5.954) across

all EA quintiles. In Panel C, we find similar evidence: the positive relation between the CNN

buy probability and 63-day MAR is not limited to any TREND quintiles. In particular, the

hedge return based on the CNN buy probability appears to be larger in magnitude in the

low and high quintiles of EA and TREND. We also find that the CNN buy features subsume

some return predictability of EA and TREND. Turning to Panels D, E, F, and G we find that

the average difference in 63-day MAR between the highest and lowest CNN buy probability

quintiles remains positive and statistically significant at the 1% level across all RET[−1, 1],

BM, GP, and AG quintiles.

We report the double sorts results based on the other eight characteristics in Table IA1 of

28The results are robust to alternative return measures (SAR, FF4, FF6, HMXZ5, and DHS3).
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the Internet Appendix, and find that the drift-predicting power of CNN buy features persists

in all the quintiles of the other seven characteristics. The results in Table 4 and Table IA1

combined indicate that CNN’s ability to predict post-earnings announcement drift is mostly

distinct from that of the usual determinants.

4.3 Cross-sectional regression

We next perform a cross-sectional regression analysis to simultaneously control for the firm

characteristics that may affect the positive relation between the CNN buy probability and

post-earnings announcement drift. Following prior literature (Akbas, 2016), we estimate

quarterly weighted Fama and MacBeth (1973) regressions in which the dependent variable

is the firm’s 63-day MAR. We begin by first running the following cross-sectional regression

every quarter:

MARi,q+1 = αq + βqCNN buy probabilityi,q +
∑

βc,qControlsi,q + εi,q+1, (7)

where i refers to the stock, q refers to the quarter, and the CNN buy probability and control

variables are converted into scaled ranks ranging from −0.5 to 0.5 with a mean of zero. Then,

we average the cross-sectional coefficients across all quarters, where the weights correspond to

the number of observations in each quarterly cross-sectional regression. In addition to using

MAR as the dependent variable, we also employ SAR and four factor-adjusted buy-and-hold

returns (FF4, FF6, HMXZ5, and DHS3).

Table 5 presents the regression results. The coefficient on the CNN buy probability in

Column 1 is 0.014 (t-statistic = 3.529), suggesting that a long-short strategy of going long
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on the highest CNN buy probability decile and short on the lowest decile generates a 63-day

MAR of around 1.4%, controlling for other firm characteristics simultaneously. In columns

2 to 5 where we replace MAR with SAR and factor-adjusted buy-and-hold returns, the

coefficients on the CNN buy probability range from 0.010 to 0.014 and are all statistically

significant at the 1% level, suggesting that our results are not caused by omission of risk

factors.

In addition, we find that in all model specifications, the post-earnings announcement

drift is significantly increasing in earnings announcement return (RET[−1, 1]) and operating

profitability (OP) while decreasing in market capitalization (SIZE).29 Overall, the results in

Table 5 provide strong support for the out-of-sample drift-predicting power of the CNN buy

features, which cannot be accounted for by stock anomalies or lack of risk controls.

5 Interpreting CNN Predictions

So far, we’ve demonstrated that CNN buy features possess significant drift-predicting power.

In this section, we first explore the nature of these CNN buy features via linear approximation.

Then, we examine whether CNN buy features exhibit incremental predictive ability for

future earnings growth, and whether the drift-predicting power of CNN buy features can

be attributable to market investors missing such predictive ability.

29While SUE and RET[−1, 1] both proxy for earnings surprises, their coefficients remain positively
significant, consistent with Kishore et al. (2008)’s findings that trading strategies formed based on SUE
and RET[−1, 1] are largely independent of each other.
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5.1 Linear approximation of CNN predictions

We begin by linearly fitting CNN predictions with firm characteristics and historical earnings.

In particular, in Table 6 we estimate quarterly weighted Fama and MacBeth (1973) regressions

in the out-of-sample period (1994Q3-2023Q2, 116 quarters) using CNN buy probability as

the dependent variable. The independent variables are the 14 firm characteristics considered

before in specification 1 and earnings in the most recent eight quarters in specification 2.30

In specification 1, we find that CNN buy probability is positively correlated with standardized

unexpected earnings (SUE), earnings acceleration (EA), earnings announcement return (RET[−1, 1]),

pre-announcement return (RET[−30,−2]), earnings volatility (VOL), book-to-market ratio

(BM), gross profitability (GP), and asset growth (AG), while negatively related to earnings

persistence (PERSIST), market capitalization (SIZE), operating profitability (OP), and total

accruals (TA). The result suggests the CNN model is capable of discerning some meaningful

return-predicting information, such as the earnings surprise effect, the SUE effect, the

earnings acceleration effect, the gross profitability effect, the value effect, and the size effect

solely from historical earnings represented in the form of images. However, the CNN buy

probability appears to load negative (positively) on operating profitability (asset growth)

despite the fact that it has been documented to positively (negatively) predict subsequent

returns.

Economically, the coefficient on SUE (= 0.510) is the largest and exceeds the second-largest

coefficient (= −0.274) on SIZE by around a half. In particular, moving from the lowest

decile to the highest decile of SUE (SIZE) is associated with a 51.0% (27.4%) incremental

30We follow Ball et al. (2009) to use return on assets (ROA) as the earnings measure, where ROA is
defined as the quarterly earnings scaled by total assets in the previous quarter.
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increase (decrease) in the decile of CNN buy probability. Overall, the 14 firm characteristics

collectively explain 32.8% of the variation in CNN buy probability, indicating most of the

variation in CNN buy features is left unexplained.

Turning to specification 2, we find that the CNN buy probability is most associated with

the current quarter’s ROA and the ROA four quarters prior in terms of economic magnitude.

In particular, moving from the lowest decile to the highest decile of ROA in the current

quarter (four quarters prior) leads to a 64.4% (42.8%) incremental increase (decrease) in

the decile of CNN buy probability. This result to some extent explain why the CNN buy

features share the most resemblance with SUE among all the considered firm characteristics

in specification 1. The eight historical earnings collectively explain 30% of the variation

in CNN buy probability, implying that 70% of the variation in CNN buy probability is

attributable to the nonlinear transformation of the underlying historical earnings.

In order to provide more insights on the reasoning behind CNN predictions, Figure 7

displays earnings images whose CNN buy probabilities rank in the top and bottom 15 among

the 240,844 earnings images in the out-of-sample period (1994Q3 to 2023 Q2, 116 quarters).

We find that earnings images with the highest CNN buy probabilities all have the current

earnings as the maximum earnings and mostly have the earnings four quarters prior as the

minimum earnings. In addition, there seems to be an increasing trend of quarterly earnings.

In contrast, we see that earnings images with the lowest CNN buy probabilities mostly have

the current earnings as the minimum earnings, and their earnings in the previous two to four

quarters are relatively high.
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5.2 CNN predictions and future earnings growth

In this section, we examine whether the CNN buy features possess incremental predictive

ability for future earnings growth and whether the post-announcement abnormal return

based on CNN buy probability is associated with this predictive ability. Since the earnings

images in Section 3 are plotted in a way similar to those investors would see during earnings

call conferences or generate on their own via statistical software, we conjecture that the

return-predicting power of CNN buy features likely manifests since market investors do not

fully incorporate the implications of CNN buy features contained in earnings images for

future earnings growth.

First, we run a regression of one-quarter-ahead earnings growth on CNN buy probability

(CNNBP) in the out-of-sample period (1994Q3-2023Q2, 116 quarters). We use the previously

defined SUE as the earnings growth measure (Bernard and Thomas, 1989; Ball and Bartov,

1996). In particular, we have

SUEq+1 = α + γ1CNN buy probabilityq +
∑

γcControlsq + δq+1, (8)

where SUEq+1 represents one-quarter-ahead earnings growth. Control variables are the 14

firm characteristics considered before.31 In columns 1 and 2 of Table 7, the coefficients

on CNNBP are positive and statistically significant at the 1% level, suggesting that CNN

buy probability is a significant predictor of earnings growth in the subsequent quarter.

Economically, moving from the lowest decile to the highest decile of CNNBP in the current

31In particular, SUEq serves as the control for the well-documented earnings autocorrelation pattern in
prior studies.
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quarter leads to a 13.3% incremental increase in the decile of one-quarter-ahead earnings

growth, controlling for past earnings growth and other firm characteristics. On the other

hand, the coefficients on SUE are significantly positive, consistent with the previous findings

in the literature.

We next examine whether the CNN buy probability (CNNBP) helps predict the three-day

abnormal return around the one-quarter-ahead earnings announcement (RET[−1, 1]q+1).
32

If this is the case, then investors do not appear to incorporate fully the implications of

earnings acceleration for earnings announcement. We find that in columns 3 and 4 of Table

7, the coefficients on CNNBP are positive and highly significant, indicating a positive relation

between CNN buy probability and the three-day abnormal return around the next earnings

announcement date. In terms of economic magnitude, moving from the lowest decile to

the highest decile of CNNBP in the current quarter leads to a 0.4% incremental increase in

RET[−1, 1]q+1.

Since CNN buy features have positive implications for both one-quarter-ahead earnings

growth and for the three-day abnormal return surrounding the next earnings announcement

date, we employ an econometrics framework, i.e., the Mishkin test (Mishkin, 1983; Abel

and Mishkin, 1983) widely used in the earnings-based anomaly literature, to test whether

the market fully understands the implications of the CNN buy features for SUEq+1.
33 In

particular, we simultaneously estimate two equations: an earnings forecasting equation and

a rational pricing equation. In our context, the earnings forecasting equation is equation (8)

32Shorter-window returns are typically less susceptible to risk considerations (Bernard and Thomas, 1990;
Sloan, 1996; Narayanamoorthy, 2006; Cao and Narayanamoorthy, 2012)

33See, for example, Sloan (1996), Dechow and Sloan (1997), Rangan and Sloan (1998), Collins and Hribar
(2000), Narayanamoorthy (2006), Cao and Narayanamoorthy (2012), Chen and Shane (2014), Hui et al.
(2016), Ma and Markov (2017), and He and Narayanamoorthy (2020).
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that characterizes the evolution of earnings growth.

Next, for the rational pricing equation, we assume a linear abnormal return (AR) model

(e.g., Sloan, 1996) that satisfies the efficient-markets condition:

ARq+1 = β(SUEq+1 − SUEe
q+1) + εq+1, (9)

where β is a multiple, SUEe
q+1 = Eq(SUEq+1) is the rational forecast of SUEq+1 in quarter

q, and εq+1 is a noise in quarter q + 1 satisfying Eq(εq+1) = 0. In equation (9), abnormal

returns are zero in expectation, i.e., Eq(ARq+1) = 0, and market efficiency implies that only

(SUEq+1 − SUEe
q+1), the unanticipated changes in SUE, can be correlated with ARq+1. In

other words, if the market correctly understands the implications of the CNN buy features

for future earnings growth as depicted in equation (8), ARq+1 should only be related to

the earnings growth surprise (SUEq+1 − SUEe
q+1 = δq+1), but not related to the CNN buy

probability in quarter q.

Combining the earnings growth forecasting model in equation (8) with the rational pricing

model in equation (9) provides the following system:

Forecasting equation: SUEq+1 = α + γ1CNNBPq +
∑

γcControlsq + δq+1 (10)

Pricing equation: ARq+1 = β(SUEq+1 − α∗ − γ∗
1CNNBPq −

∑
γ∗
cControlsq) + εq+1. (11)

The two systems are simultaneously estimated using iterative-weighted non-linear least

squares (Mishkin, 1983), and the coefficients with * represent the coefficients inferred from
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market investors’ expectation of SUEq+1.
34 In particular, we are interested in testing whether

γ1 = γ∗
1 holds or not, i.e., whether the observed relation between SUEq+1 and CNN buy

features is the same as the relation between SUEq+1 and CNN buy features implicit in

ARq+1. In other words, γ1 = γ∗
1 indicates that investors are fully aware of the implications

of CNN buy features for SUEq+1, and this restriction yields a likelihood ratio test statistic

that has a chi-square distribution with one degree of freedom.35 If γ1 = γ∗
1 is rejected

while 0 < γ∗
1 < γ1, then investors only partially incorporate the implications of CNN buy

features for future earnings growth. On the other hand, if γ1 = γ∗
1 is rejected and γ∗

1 = 0,

then investors appear to completely ignore the implications of CNN buy features for future

earnings growth.

We report the estimated coefficients, t-statistics based on firm and quarter double-clustered

standard errors, and likelihood ratio test statistics of the Mishkin test in Table 8. In

particular, ARq+1 is either the abnormal return from a three-day window around quarter

q + 1’s earnings or the quarter-long window starting two days after the quarter q earnings

and ending on the next announcement date. All variables except for the abnormal return

AR are converted into scaled ranks ranging from −0.5 to 0.5 with a mean of 0.

Since γ1 = γ∗
1 is rejected at the 1% level (likelihood ratio statistic 8.218 for the three-day

window and 21.444 for the quarter-long window) and since γ1 > γ∗
1 , it appears that market

34Kraft et al. (2007) shows that the exclusion of control variables from the forecasting and pricing equations
leads to an omitted variables problem. That is, if the variables omitted are not rationally priced and are
also correlated with the variable of interest in the forecasting equation, then the source of market inefficiency
cannot be correctly identified. Hence, we include various control variables that may be related to CNN buy
probability.

35The test statistic of the Mishkin test is 2×n×ln(SSRc/SSRu) distributed asymptotically χ2(q), where q
is the number of constraints imposed by market efficiency, n is the number of observations in each equation,
SSRc is the sum of squared residuals from the constrained weighted system, and SSRu is the sum of squared
residuals from the unconstrained weighted system.
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investors are underestimating the implications of CNN buy features for future earnings

growth. In particular, the quarter-long window γ∗
1 (= 0.010) is statistically indistinguishable

from zero36 while the three-day window γ∗
1 (= 0.062) is highly significant, implying that

market investors are completely ignoring the positive implications of CNN buy features for

future earnings growth at the time of the current earnings announcement, but partially

understands these implications by the time of the next earnings announcement. In other

words, the market gradually learns more about the implications of CNN buy features for

future earnings growth from other sources of information by the time of the next earnings

announcement.

Overall, the results in this section provide evidence that the positive relation between

the CNN buy probability and post-earnings announcement drift is consistent with market

investors not fully understanding the implications of the CNN buy features for one-quarter-ahead

earnings growth.

6 Robustness Checks

6.1 Month-based rebalancing trading strategy

The out-of-sample tests in Table 2 involves buying and selling stocks two days after an

earnings announcement, which requires significant attention and thus may be difficult to

implement in reality. Hence, in this section we examine whether sorting stocks based on the

36In untabulated tests we use SARq+1 and four factor-adjusted buy-and-hold returns (FF4q+1, FF6q+1,
HMXZ5q+1, and DHS3q+1) to measure quarter-long ARq+1, respectively. We find that in all specifications,
γ1 = γ∗

1 is rejected at the 1% level, and γ1 is statistically indistinguishable from zero. Hence, the fact that
market investors are completely unaware of the implications of CNN buy features can not be attributed to
lack of risk controls.
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CNN buy probability to form a more conservative month-based rebalancing trading strategy

(Hou et al., 2020; Jensen et al., 2023) can still generate profits.

In particular, at the end of each month t in the out-of-sample period, we sort firms into

deciles based on the CNN buy probability computed using the most recent eight quarterly

earnings. For a firm to enter the portfolio formation at the end of month t, we require that

announcement date of the most recent earnings to be within three months prior to portfolio

formation to exclude stale earnings information. We then examine the average returns in

the subsequent month t+ 1 for each CNN buy probability decile.

Table 9 presents the equal-weighted and value-weighted average portfolio returns for

each CNN buy probability decile. Panel A shows that a hedge portfolio going long in the

top CNN-based buy probability decile and short in the bottom decile yields an average

equal-weighted monthly return of 1.0%. The factor-adjusted hedge returns range from 0.7%

to 0.8% and are all statistically significant at the 1% level. On the other hand, the average

value-weighted hedge returns are significantly positive but are smaller in magnitude (ranging

from 0.3% to 0.5%). This is because CNN model is treating each input image equally

during the training phase, regardless of market capitalization. Hence, CNN predictions are

unsurprisingly more accurate when we employ CNN stored parameters to form out-of-sample

portfolios with equal-weights rather than value-weights.

6.2 Alternative CNN modeling choices

We next explore whether the main results in Table 2 are sensitive to model specifications. In

particular, we re-train the CNN model with alternative modeling choices, as listed in the first
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column of Table 10, and then examine the return differential in the 63-day post-announcement

BHAR between the highest and lowest CNN buy probability deciles in the out-of-sample

period.

In Panel A, we experiment with different combinations of filter size and number of

convolution layers. The combination of our CNN model can be expressed as (7 × 7, 3 × 3,

3× 3), while we consider alternative modeling choices of (5× 5, 3× 3, 3× 3), (5× 5, 3× 3,

3 × 3), (7 × 3, 3 × 3), (5 × 5, 3 × 3), and (3 × 3, 3 × 3). We find that the 63-day MAR,

SAR, and factor-adjusted returns remain positive and highly significant, indicating that

CNN model performance is mostly insensitive to those choices. In addition, omitting the

batch normalization step or Xavier initialization, adjusting the activation function from leaky

ReLU to ReLU, or lowering the dropout rate from 0.5 to 0 does not generate a noticeable loss

in performance either. Hence, our main results are robust to alternative modeling choices.

In Panel B, we employ a one-dimensional CNN model in training where the inputs are

1 × 8 pixels row vectors consisting of the time-series of firms’ most recent eight quarterly

earnings (in the form of ROA) as inputs, and the convolutional filters sliding across the

inputs are row vectors as well.37 In other words, the one-dimensional CNN model is a special

case of the two-dimensional CNN model, with both the inputs and the convolutional filters

shrinking from matrices to row vectors. In particular, we consider the following modeling

choices: (1 × 7, 1 × 3, 1 × 3), (1 × 5, 1 × 3, 1 × 3), (1 × 3, 1 × 3, 1 × 3), (1 × 7, 1 × 3),

(1× 5, 1× 3), and (1× 3, 1× 3), and find that the 63-day MAR, SAR, and factor-adjusted

returns are statistically indistinguishable from zero. The only exception is when we consider

a modeling choice of (1× 7, 1× 3, 1× 3), but the magnitude of the return differences is less

37The results are robust to using unscaled earnings numbers.
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than one-third of that in Panel A. The results suggest that image representation of historical

earnings produces more information useful in prediction post-earnings announcement drift.

7 Conclusion

In this study, we examine the drift-predicting information contained in visualized earnings

data. In particular, we apply CNN to earnings images plotted using time series of quarterly

earnings to automatically extract CNN buy features that are most predictive of post-earnings

announcement drift. In out-of-sample tests, we find that firms in the highest CNN buy

probability decile significantly outperform firms in the lowest CNN buy probability decile

by 3.6% in the 63-day post-announcement window. In addition, the drift-predicting power

of CNN buy features is robust to a battery of controls for risk, distinct from that of the

previously documented anomalies and earnings attributes, and stable over time.

We find that while CNN buy probability shares some resemblance with firm characteristics

known to predict returns, its variation is largely left unexplained. In particular, the CNN

buy probability appear to be positively associated with one-quarter-ahead earnings growth

as well as the three-day abnormal return surrounding the next earnings announcement. As

a result, we employ a direct market efficiency test and find that high abnormal returns

following high CNN buy probability and the positive implications of CNN buy features for

future earnings growth are strongly associated. In other words, the drift-predicting power

of CNN buy features is consistent with investors not incorporating fully the implications of

CNN buy features for future earnings growth.

In addition, the drift-predicting ability of CNN buy features persists in a more conservative
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monthly-rebalancing strategy setting, and remains insensitive to various model specifications

when image representation is used. Overall, our paper highlights the usefulness of applying

deep learning techniques to visualized data in predicting post-earnings announcement returns.
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Appendix. Variable Definitions. This table summarizes variable definitions. Compustat
annual or quarterly items are colored in blue.

Variables Descriptions

MAR Market-adjusted return (MAR) is defined as the difference between the
buy-and-hold return of an announcing firm and that of the CRSP value-weighted
market portfolio over the 63-day windows [2, 64] following its earnings
announcement date.

SAR Size-adjusted return (SAR) is defined as the difference between the buy-and-hold
return of an announcing firm and that of a size-matched portfolio over the 63-day
window ([2,64]) following its earnings announcement date. We use the monthly
NYSE size decile breakpoints at the end of June in year t to determine the
size-matched portfolio for a firm whose earnings announcement date is between
July of year t to June of year t+ 1.

FF4 Fama-French three-factor and momentum-adjusted buy-and-hold return during
the 63-day window ([2,64]) following earnings announcement date, with factor
loadings estimated using the 120-day window ([-150,-31], 90 days minimum) prior
to the earnings announcement date. The factors are market, size, value, and
momentum.

FF6 Fama-French five-factor and momentum-adjusted buy-and-hold return during
the 63-day window ([2,64]) following earnings announcement date, with factor
loadings estimated using the 120-day window ([-150,-31], 90 days minimum) prior
to the earnings announcement date. The factors are market, size, value, operating
profitability, investment, and momentum.

HMXZ5 q5-factor-adjusted buy-and-hold return during the 63-day window ([2,64])
following earnings announcement date, with factor loadings estimated using
the 120-day window ([-150,-31], 90 days minimum) prior to the earnings
announcement date. The factors are market, size, investment, return on equity,
and expected growth.

DHS3 Behavioral-factor-adjusted buy-and-hold return during the 63-day window ([2,64])
following earnings announcement date, with factor loadings estimated using
the 120-day window ([-150,-31], 90 days minimum) prior to the earnings
announcement date. The factors are market, financing, and post earnings
announcement drift.

SUE Standardized unexpected earnings, defined as the change in split-adjusted
quarterly earnings per share (EPSPXQ

AJEXQ ) from its value four quarters ago divided by
the standard deviation of this change over the prior eight quarters (six quarters
minimum). SUE also serves as the earnings growth proxy.
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Variables Descriptions

EA Earnings acceleration. For firm i in quarter q, we use

EPSi,q − EPSi,q−4

Stock Pricei,q−1
− EPSi,q−1 − EPSi,q−5

Stock Pricei,q−2
,

where EPSi,q is earnings per share for firm i in quarter q. Shares are adjusted for
stock splits.

TREND Trend in quarterly gross profitability. For firm i in quarter q, we use βi,q estimated
from the following time-series regression:

GPQi,q = αi,q + βi,qt+ λ1,i,qD1 + λ2,i,qD2 + λ3,i,qD3 + ϵi,q,

where t = 1, 2, ..., 8 and represents a deterministic time trend covering quarter q−7
through q, and D1 to D3 represent quarterly dummy variables. GPQ is calculated
as sales revenue (SALEQ) minus costs of goods sold (COGSQ), divided by total
assets (ATQ). If SALEQ is unavailable, we use quarterly revenue (REVTQ).
If COGSQ is unavailable, we use quarterly total operating expenses (XOPRQ)
minus quarterly selling, general and administrative expenses (XSGAQ, zero if
missing).

RET[−1, 1] Earnings announcement return, defined as the value-weighted market-adjusted
stock return during the [−1, 1] window around earnings announcement date.

RET[−30, 2] Pre-announcement return, defined as the value-weighted market-adjusted stock
return during the [−30,−2] window prior to earnings announcement date.

PERSIST Earnings persistence. For firm i in quarter q, we use βi,q estimated from the
following time-series regression:

EARNINGSi,q = αi,q + βi,qEARNINGSi,q−1 + ϵi,q,

with the most recent eight quarters (quarter q − 7 to q) of earnings (IBQ).

VOL Earnings volatility. We use the standard deviation of earnings (IBQ) in the most
recent eight quarters (quarter q − 7 to q).

SIZE Firm size for July of year t to June of year t + 1 is defined as June market
capitalization (from CRSP) of year t.

BM Book-to-market ratio for July of year t to June of year t + 1 is defined as book
equity for the fiscal year ending in calendar year t − 1 divided by the market
capitalization at the end of December of t − 1. Book equity is computed as
stockholders’ book equity (SEQ), plus deferred taxes (TXDB, zero if missing)
and investment tax credit (ITCB, zero if missing), minus the book value
of preferred stock (depending on availability, we use redemption (PSTKRF),
carrying (PSTKL), or par value (PSTK)).
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Variables Descriptions

GP Gross profitability for July of year t to June of year t+1 is defined as sales revenue
(SALE) minus cost of goods sold (COGS), divided by total assets (AT) for the
fiscal year ending in calendar year t − 1. If SALE is unavailable, we use revenue
(REVT). If COGS is unavailable, we use total operating expenses (XOPR) minus
selling, general and administrative expenses (XSGA, zero if missing).

OP Operating profitability for July of year t to June of year t + 1 is defined
as sales revenue (SALE) minus cost of goods sold (COGS), minus selling,
general, and administrative expenses (XSGA), and plus research and development
expenditures (XRD, zero if missing), scaled by total assets (AT) for the fiscal year
ending in calendar year t − 2. If SALE is unavailable, we use revenue (REVT).
If COGS is unavailable, we use total operating expenses (XOPR) minus selling,
general and administrative expenses (XSGA, zero if missing).

TA Total accruals for July of year t to June of year t+1 is defined as net income (NI)
minus operating, investing, and financing net cash flows (OANCF, IVNCF, and
FINCF) plus sales of stocks (SSTK, zero if missing) minus stock repurchases and
dividends (items PRSTKC and DV, zero if missing) for the fiscal year ending in
calendar year t− 1, scaled by total assets (AT) for the fiscal year ending in t− 2.

OA Operating accruals for July of year t to June of year t+1 is defined as net income
(NI) minus net cash flow from operations (OANCF) for the fiscal year ending in
calendar year t− 1, scaled by total assets (AT) for the fiscal year ending in t− 2.

AG Asset growth for July of year t to June of year t+1 is defined as total assets (AT)
for the fiscal year ending in calendar year t − 1 minus total assets for the fiscal
year ending in t− 2, scaled by total assets for the fiscal year ending in t− 2.

ROA Return on assets is defined as quarterly earnings (IBQ) divided by total assets
(ATQ) in the previous quarter.
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E1 E2 E3 E4 E5 E6 E7 E8

Earnings (in millions) 3.163 4.882 5.068 4.472 4.243 5.263 7.348 6.542
[x1, x2] [1, 2] [4, 5] [7, 8] [10, 11] [13, 14] [16, 17] [19, 20] [22, 23]
[y1, y2] [0, 10] [0, 16] [0, 17] [0, 15] [0, 14] [0, 17] [0, 24] [0, 21]

Figure 1. An Example of Type I’s Earnings Image. This figure displays a
black-and-white 24×24 pixels earnings image for a firm whose quarterly earnings in the most
recent eight quarters (quarters q − 7 to q) are all non-negative. E1, E2, ..., and E8 represent
the quarterly earnings in quarter q− 7, q− 6, ..., and q, respectively. The bottom-left vertex
of an image is set as the origin of a two-dimensional coordinate system, and a rectangular
area in an image is represented as ([x1, x2], [y1, y2]).

42



E1 E2 E3 E4 E5 E6 E7 E8

Earnings (in millions) -0.263 -0.609 -0.110 0.114 0.322 1.122 0.989 0.945
[x1, x2] [1, 2] [4, 5] [7, 8] [10, 11] [13, 14] [16, 17] [19, 20] [22, 23]
[y1, y2] [4, 8] [0, 8] [6, 8] [8, 10] [8, 12] [8, 24] [8, 22] [8, 21]

Figure 2. An Example of Type II’s Earnings Image. This figure displays a
black-and-white 24×24 pixels earnings image for a firm whose maximum quarterly earnings in
the most recent eight quarters (quarters q − 7 to q) is positive, and the minimum quarterly
earnings in the most recent eight quarters is negative. E1, E2, ..., and E8 represent the
quarterly earnings in quarter q − 7, q − 6, ..., and q, respectively. The bottom-left vertex of
an image is set as the origin of a two-dimensional coordinate system, and a rectangular area
in an image is represented as ([x1, x2], [y1, y2]).
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E1 E2 E3 E4 E5 E6 E7 E8

Earnings (in millions) -0.364 -1.214 -1.763 -0.920 -10.361 -1.985 -3.551 -4.016
[x1, x2] [1, 2] [4, 5] [7, 8] [10, 11] [13, 14] [16, 17] [19, 20] [22, 23]
[y1, y2] [23, 24] [21, 24] [20, 24] [22, 24] [0, 24] [19, 24] [16, 24] [15, 24]

Figure 3. An Example of Type III’s Earnings Image. This figure displays a
black-and-white 24×24 pixels earnings image for a firm whose quarterly earnings in the most
recent eight quarters (quarters q − 7 to q) are all non-positive. E1, E2, ..., and E8 represent
the quarterly earnings in quarter q− 7, q− 6, ..., and q, respectively. The bottom-left vertex
of an image is set as the origin of a two-dimensional coordinate system, and a rectangular
area in an image is represented as ([x1, x2], [y1, y2]).
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Figure 4. CNN Building Block: Padding, Convolution, Activation, and Max-Pooling.
This figure displays how padding, convolution, activation, and max-pooling work in a CNN building
block. The example input image is black-and-white and of size 6 × 6 pixels. The convolutional
filter is of size 3 × 3 pixels. By using padding, the output after convolution has the same size of
6× 6 pixels. The activation function is Leaky ReLU, which transforms an input value x to itself if
x > 0 and 0.01x otherwise. The max-pooling (2× 2 pixels) operation shrinks the input width and
height to half by extracting the maximum element within a 2 × 2 pixels area and sliding through
the image with a stride of 2.
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Figure 5. CNN Architecture Diagram. This figure displays the architecture of the CNN
model. The notation D × W × H represents the size of an image/feature map, where D is the
depth, W is the width, and H is the height. The input black-and-white image is of size 24 × 24
pixels. There are three “blocks” in the model, with each block consisting of a convolutional layer
and a max-pooling layer. The first convolutional layer has 64 filters of size 7× 7 pixels, the second
convolutional layer has 128 filters of size 3 × 3 pixels, and the third convolutional layer has 256
filters of size 3 × 3 pixels. After convolution, the output has the same width and height as those
of the input due to padding, while its depth increases to the number of filters in the convolutional
layer. After max-pooling, the output has half the width and height of the input, while its depth
is the same as that of the input. Flattening refers to the process of converting the elements in
a series of matrices into a vector. The fully connected layer linearly transforms the values in the
vector to produce three “scores” of the three labels (label 1 = “sell”, label 2 = “hold”, label 3 =
“buy”). Finally, the Softmax function transforms the three scores to three probabilities (ŷ1, ŷ2, ŷ3)
that sum to one, and ŷ3 is the CNN buy probability.
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1994Q3 2001Q3 2008Q4 2016Q1 2023Q2

Quarter

-0.1

-0.05

0

0.05

0.1

0.15

Difference in buy-and-hold MAR between high and low CNNBP deciles

Figure 6. Time Stability of CNN Out-Of-Sample Drift-Predicting Performance.
This figure depicts the difference in the average 63-day buy-and-hold market-adjusted returns
(MAR) between high and low CNN buy probability (CNNBP) deciles in each quarter during
the out-of-sample period (1994Q3 to 2023Q2, 116 quarters). The decile cutoffs are based on
the distribution of the previous quarter’s CNN buy probability.
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Panel A 

 

 

Panel B 

 

Figure 7. Earnings Images of the Lowest and Highest CNN Buy Probabilities. Panels
A and B present earnings images whose CNN buy probabilities rank in the top 15 and bottom 15
among those of all earnings images in the out-of-sample period (1994Q3 to 2023Q2, 116 quarters),
respectively. The corresponding CNN buy probabilities are also reported in each earnings image.
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Table 2. CNN Buy Probability and Post-Earnings Announcement Drift:
Univariate Portfolio Analysis. This table reports the average 63-day buy-and-hold
abnormal return (BHAR) after earnings announcements, including market-adjusted return
(MAR), size-adjusted return (SAR), and factor-adjusted returns (FF4, FF6, HMXZ5,
and DHS3) for portfolios formed based on CNN buy probability (CNNBP) deciles in the
out-of-sample period (1994Q3-2023Q2, 116 quarters). The CNNBP decile cutoffs are based
on the distribution of the previous quarter’s CNNBP. The average CNNBP for each CNNBP
decile is reported in brackets. See Appendix for variable definitions. Newey and West (1987)
t-statistics with three lags are reported in parentheses, and ***, **, and * indicate significance
at the 1%, 5%, and 10% level, respectively.

The 63-day post-announcement buy-and-hold abnormal return

CNNBP deciles MAR SAR FF4 FF6 HMXZ5 DHS3

Low [25.5%] −0.006 −0.015*** −0.007*** −0.008*** −0.007** 0.001
(−1.137) (−5.210) (−3.364) (−3.622) (−2.458) (0.293)

2 [28.8%] −0.003 −0.012*** −0.003 −0.002 −0.001 0.004
(−0.624) (−4.714) (−1.385) (−1.201) (−0.584) (0.919)

3 [30.6%] 0.004 −0.006** 0.001 0.002 0.006* 0.012**
(0.651) (−2.610) (0.270) (0.512) (1.979) (2.150)

4 [31.9%] 0.003 −0.006* −0.001 0.001 0.004 0.013*
(0.449) (−1.689) (−0.215) (0.116) (1.104) (1.833)

5 [33.1%] 0.006 −0.004 0.002 0.003 0.007* 0.015**
(0.820) (−1.359) (0.518) (0.680) (1.929) (2.123)

6 [34.3%] 0.011 0.001 0.007 0.007* 0.010*** 0.019***
(1.408) (0.232) (1.560) (1.714) (2.823) (2.667)

7 [35.5%] 0.014* 0.004 0.009* 0.009** 0.013*** 0.021***
(1.729) (1.204) (1.946) (2.085) (3.407) (2.792)

8 [37.1%] 0.015** 0.005 0.011*** 0.011*** 0.015*** 0.022***
(2.117) (1.624) (2.901) (2.813) (3.754) (3.238)

9 [39.4%] 0.024*** 0.014*** 0.017*** 0.016*** 0.021*** 0.029***
(3.850) (5.323) (5.371) (5.226) (6.388) (4.909)

High [44.4%] 0.030*** 0.020*** 0.024*** 0.024*** 0.027*** 0.036***
(4.994) (5.093) (6.555) (6.830) (7.375) (6.039)

High-Low [18.9%] 0.036*** 0.035*** 0.031*** 0.032*** 0.034*** 0.034***
(7.213) (7.111) (8.092) (9.035) (8.378) (8.192)
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Table 3. Firm Characteristics and Post-Earnings Announcement Drift: Univariate
Portfolio Analysis. This table reports the average 63-day post-announcement buy-and-hold
abnormal return (BHAR) difference between the highest and lowest variable deciles in the
out-of-sample period (1994Q3-2023Q2, 116 quarters). We use market-adjusted return (MAR),
size-adjusted return (SAR), and factor-adjusted returns (FF4, FF6, HMXZ5, and DHS3) as BHAR
measures. The variables include the CNN buy probability (CNNBP), standardized unexpected
earnings (SUE), earnings acceleration (EA), trend in gross profitability (TREND), market
capitalization (SIZE), book-to-market ratio (BM), earnings announcement return (RET[−1,−1]),
pre-announcement return (RET[−30,−2]), earnings persistence (PERSIST), earnings volatility
(VOL), gross profitability (GP), operating profitability (OP), total accruals (TA), operating
accruals (OA), and asset growth (AG). The variable decile cutoffs are based on the distribution
of the previous quarter’s variable. See Appendix for variable definitions. Newey and West (1987)
t-statistics with three lags are reported in parentheses, and ***, **, and * indicate significance at
the 1%, 5%, and 10% level, respectively.

The 63-day post-announcement buy-and-hold abnormal return difference
between the highest and lowest variable deciles

Variable MAR SAR FF4 FF6 HMXZ5 DHS3

CNNBP 0.036*** 0.035*** 0.031*** 0.032*** 0.034*** 0.034***
(7.213) (7.111) (8.092) (9.035) (8.378) (8.192)

SUE 0.026*** 0.026*** 0.021*** 0.021*** 0.021*** 0.020***
(5.025) (5.142) (5.558) (6.161) (5.559) (4.691)

EA 0.024*** 0.024*** 0.022*** 0.023*** 0.021*** 0.024***
(6.969) (6.839) (6.877) (6.827) (6.044) (7.489)

TREND 0.020*** 0.018*** 0.014*** 0.014*** 0.016*** 0.015***
(3.353) (3.154) (2.974) (3.073) (3.188) (2.789)

RET[−1, 1] 0.035*** 0.035*** 0.038*** 0.037*** 0.035*** 0.033***
(5.551) (5.967) (7.711) (7.813) (6.499) (5.660)

RET[−30,−2] −0.003 0.002 0.005 0.006 0.002 −0.004
(−0.291) (0.268) (0.812) (1.056) (0.217) (−0.572)

PERSIST −0.003 −0.003 −0.004 −0.002 −0.007* −0.002
(−0.983) (−0.876) (−1.127) (−0.536) (−1.792) (−0.459)

VOL −0.006 −0.003 −0.018** −0.021*** −0.022*** −0.021***
(−0.769) (−0.413) (−2.406) (−2.898) (−2.770) (−2.740)

SIZE −0.017 −0.012* −0.026** −0.027** −0.032*** −0.034**
(−1.376) (−1.956) (−2.041) (−2.293) (−2.828) (−2.517)

BM 0.019* 0.016* 0.022*** 0.017** 0.025*** 0.020**
(1.692) (1.685) (2.625) (2.177) (2.899) (2.073)

GP 0.020*** 0.020*** 0.024*** 0.019*** 0.010* 0.016***
(2.910) (3.222) (4.011) (3.091) (1.677) (2.842)

OP 0.017 0.018** 0.017 0.015 0.001 0.010
(1.518) (2.352) (1.615) (1.528) (0.100) (0.895)

OA −0.005 −0.005 0.000 −0.002 −0.003 −0.004
(−0.770) (−0.763) (−0.064) (−0.441) (−0.762) (−0.743)

TA −0.012 −0.010 −0.006 −0.007 −0.014** −0.011
(−1.406) (−1.502) (−0.734) (−1.013) (−2.140) (−1.307)

AG −0.019** −0.017** −0.018** −0.016** −0.018** −0.017*
(−2.108) (−2.236) (−2.166) (−2.047) (−2.532) (−1.936)
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Table 4. CNN Buy Probability and Post-Earnings Announcement Drift: Double Sorts. This
table reports the average 63-day buy-and-hold market-adjusted returns (MAR) after earnings announcements
for portfolios formed based on the CNN buy probability quintiles and one of the six firm characteristics
including standardized unexpected earnings (SUE), earnings acceleration (EA), trend in gross profitability
(TREND), earnings announcement return (RET[-1,1]), book-to-market ratio (BM), gross profitability (GP),
and asset growth (AG) using independent two-way sorting in the out-of-sample period (1994Q3-2023Q2,
116 quarters). The quintile cutoffs are based on the distribution of these variables in the previous quarter.
See Appendix for variable definitions. Newey and West (1987) t-statistics with three lags are reported in
parentheses, and ***, **, and * indicate significance at the 1%, 5%, and 10% level, respectively.

Panel A: Two-way sorting, controlling for standardized unexpected earnings (SUE)

CNN buy probability quintiles

SUE quintiles Low 2 3 4 High High-Low

Low −0.007 0.000 −0.008 −0.004 0.007 0.013
(−1.295) (0.025) (−0.920) (−0.385) (0.541) (1.208)

2 −0.005 −0.003 0.006 0.001 0.007 0.012
(−0.967) (−0.565) (0.612) (0.088) (0.587) (1.265)

3 −0.005 0.005 0.010 0.016** 0.021*** 0.025***
(−0.836) (0.567) (1.325) (2.147) (3.040) (4.088)

4 0.002 0.011 0.015* 0.024*** 0.028*** 0.027***
(0.291) (1.336) (1.936) (3.137) (4.368) (4.044)

High 0.009 0.009 0.017** 0.021*** 0.029*** 0.019***
(1.425) (1.217) (2.377) (3.087) (5.399) (3.311)

High-Low 0.016*** 0.009 0.025*** 0.024*** 0.021*
(3.972) (1.280) (4.269) (3.478) (1.748)

Panel B: Two-way sorting, controlling for earnings acceleration (EA)

CNN buy probability quintiles

EA quintiles Low 2 3 4 High High-Low

Low −0.006 0.002 0.008 0.007 0.029*** 0.035***
(−0.634) (0.176) (0.726) (0.594) (2.921) (5.031)

2 −0.006 0.000 0.001 0.009 0.021*** 0.027***
(−1.121) (0.044) (0.220) (1.406) (3.465) (5.954)

3 0.000 0.000 0.007 0.009** 0.016*** 0.016***
(0.028) (0.014) (1.574) (1.992) (3.158) (2.711)

4 0.001 0.000 0.008 0.014** 0.020*** 0.019***
(0.175) (−0.019) (1.440) (2.397) (3.998) (3.746)

High −0.013 0.017 0.016 0.027*** 0.041*** 0.054***
(−1.072) (1.179) (1.450) (2.684) (5.286) (5.505)

High-Low −0.007 0.015** 0.008* 0.020*** 0.012**
(−0.744) (2.025) (1.709) (4.476) (2.021)

Panel C: Two-way sorting, controlling for trend in gross profitability (TREND)

CNN buy probability quintiles

TREND quintiles Low 2 3 4 High High-Low

Low −0.009 −0.002 0.004 0.012 0.023*** 0.032***
(−1.470) (−0.197) (0.480) (1.300) (3.193) (6.792)

2 −0.002 0.001 0.001 0.008 0.024*** 0.025***
(−0.332) (0.136) (0.089) (1.157) (4.092) (5.332)

3 −0.005 −0.001 0.005 0.016** 0.021*** 0.026***
(−0.924) (−0.262) (0.963) (2.017) (3.389) (5.801)

4 −0.001 0.007 0.011 0.016** 0.025*** 0.027***
(−0.272) (1.125) (1.534) (2.392) (3.910) (5.750)

High −0.002 0.014 0.018* 0.018* 0.037*** 0.039***
(−0.352) (1.157) (1.684) (1.940) (4.740) (6.632)

High-Low 0.007 0.016** 0.014** 0.005 0.013**
(1.424) (2.206) (2.357) (0.963) (2.037)
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Table 4. CNN Buy Probability and Post-Earnings Announcement Drift: Double Sorts.
(continued)

Panel D: Two-way sorting, controlling for earnings announcement return (RET[−1, 1])

CNN buy probability quintiles

RET[−1, 1] quintiles Low 2 3 4 High High-Low

Low −0.011 −0.003 −0.005 0.003 0.017** 0.028***
(−1.555) (−0.292) (−0.493) (0.275) (2.008) (5.094)

2 −0.004 0.001 0.005 0.005 0.019*** 0.023***
(−0.852) (0.090) (0.677) (0.814) (3.083) (4.832)

3 −0.002 0.003 0.003 0.014** 0.019*** 0.021***
(−0.487) (0.511) (0.542) (2.156) (3.681) (5.625)

4 −0.003 0.011 0.012* 0.016** 0.025*** 0.028***
(−0.574) (1.510) (1.757) (2.374) (4.220) (6.207)

High 0.001 0.010 0.029*** 0.030*** 0.044*** 0.044***
(0.088) (1.123) (2.966) (3.038) (5.706) (5.913)

High-Low 0.011** 0.012* 0.035*** 0.027*** 0.027***
(2.033) (1.861) (6.177) (3.847) (4.030)

Panel E: Two-way sorting, controlling for book-to-market ratio (BM)

CNN buy probability quintiles

BM quintiles Low 2 3 4 High High-Low

Low −0.003 −0.004 0.000 0.007 0.017*** 0.020***
(−0.660) (−0.575) (0.045) (1.146) (2.876) (3.111)

2 0.000 0.002 0.005 0.012** 0.019*** 0.019***
(0.036) (0.373) (0.687) (2.083) (3.578) (4.478)

3 −0.003 0.007 0.008 0.013* 0.025*** 0.027***
(−0.477) (0.869) (1.333) (1.841) (3.884) (6.189)

4 −0.004 0.006 0.011 0.014 0.029*** 0.033***
(−0.639) (0.679) (1.323) (1.548) (4.276) (7.875)

High −0.013* 0.010 0.017 0.020* 0.044*** 0.057***
(−1.787) (0.863) (1.468) (1.796) (4.274) (7.456)

High-Low −0.010 0.014 0.017 0.013 0.027**
(−1.407) (1.326) (1.632) (1.322) (2.532)

Panel F: Two-way sorting, controlling for gross profitability (GP)

CNN buy probability quintiles

GP quintiles Low 2 3 4 High High-Low

Low −0.016** −0.006 −0.005 0.002 0.018** 0.034***
(−2.215) (−0.504) (−0.555) (0.185) (2.184) (4.747)

2 −0.007 0.007 0.012* 0.010 0.025*** 0.032***
(−1.238) (0.944) (1.722) (1.476) (3.790) (7.520)

3 −0.004 0.003 0.015* 0.014** 0.030*** 0.035***
(−0.853) (0.462) (1.931) (2.007) (4.698) (6.854)

4 0.005 0.006 0.014* 0.019*** 0.028*** 0.024***
(0.921) (0.985) (1.947) (2.699) (4.563) (4.837)

High −0.002 0.009 0.010 0.026*** 0.036*** 0.038***
(−0.299) (1.219) (1.387) (2.765) (5.585) (8.569)

High-Low 0.015** 0.014* 0.016*** 0.024*** 0.019**
(2.490) (1.751) (2.725) (3.718) (2.340)
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Table 4. CNN Buy Probability and Post-Earnings Announcement Drift: Double Sorts.
(continued)

Panel G: Two-way sorting, controlling for asset growth (AG)

CNN buy probability quintiles

AG quintiles Low 2 3 4 High High-Low

Low −0.006 0.009 0.014 0.018 0.037*** 0.042***
(−0.689) (0.830) (1.316) (1.633) (4.198) (8.064)

2 −0.003 0.003 0.013* 0.017** 0.033*** 0.036***
(−0.599) (0.429) (1.696) (2.204) (4.643) (7.288)

3 −0.002 0.006 0.008 0.016** 0.026*** 0.028***
(−0.491) (1.089) (1.305) (2.566) (3.877) (6.338)

4 0.000 0.002 0.011 0.013* 0.023*** 0.024***
(−0.092) (0.324) (1.588) (1.855) (4.508) (5.149)

High −0.010 −0.003 −0.005 0.005 0.019*** 0.029***
(−1.478) (−0.323) (−0.644) (0.670) (3.295) (5.409)

High-Low −0.004 −0.012 −0.019*** −0.013* −0.018***
(−0.690) (−1.600) (−2.878) (−1.796) (−2.773)
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Table 5. CNN Buy Probability and Post-Earnings Announcement Drift: Regression
Analysis. The table presents results of quarterly weighted Fama and MacBeth (1973) regressions
in the out-of-sample period (1994Q3-2023Q2, 116 quarters) using the 63-day buy-and-hold
abnormal return (BHAR) after earnings announcements, including market-adjusted return (MAR),
size-adjusted return (SAR), and factor-adjusted returns (FF4, FF6, HMXZ5, and DHS3), as the
dependent variables. The weights correspond to the number of observations used in each quarterly
cross-sectional regression. The independent variables include the CNN buy probability (CNNBP),
standardized unexpected earnings (SUE), earnings acceleration (EA), trend in gross profitability
(TREND), market capitalization (SIZE), book-to-market ratio (BM), earnings announcement
return (RET[−1,−1]), pre-announcement return (RET[−30,−2]), earnings persistence (PERSIST),
earnings volatility (VOL), gross profitability (GP), operating profitability (OP), total accruals (TA),
operating accruals (OA), and asset growth (AG). All variables except for six measures of BHAR
(MAR, SAR, FF4, FF6, HMXZ5, and DHS3) are converted into scaled ranks ranging from −0.5 to
0.5 with a mean of zero. See Appendix for variable definitions. Newey and West (1987) t-statistics
with three lags are reported in parentheses, and ***, **, and * indicate significance at the 1%, 5%,
and 10% level, respectively.

(1) (2) (3) (4) (5) (6)
MAR SAR FF4 FF6 HMXZ5 DHS3

Intercept 0.011* 0.000 0.007** 0.007** 0.010*** 0.019***
(1.707) (0.216) (2.098) (2.308) (3.677) (3.068)

CNNBP 0.014*** 0.014*** 0.010*** 0.011*** 0.012*** 0.014***
(3.529) (3.535) (3.507) (3.652) (3.971) (4.344)

SUE 0.011*** 0.012*** 0.011*** 0.010*** 0.010*** 0.009**
(2.951) (3.009) (3.406) (3.146) (2.840) (2.389)

EA 0.013*** 0.013*** 0.012*** 0.013*** 0.013*** 0.014***
(4.892) (4.713) (4.681) (5.133) (4.833) (5.417)

TREND 0.016*** 0.016*** 0.012*** 0.013*** 0.012*** 0.013***
(4.769) (4.717) (3.797) (3.679) (3.961) (4.291)

RET[−1, 1] 0.021*** 0.023*** 0.024*** 0.024*** 0.023*** 0.021***
(5.734) (6.520) (7.126) (6.861) (7.008) (5.788)

RET[−30,−2] −0.011** −0.006 −0.003 −0.003 −0.006 −0.010**
(−2.113) (−1.207) (−0.745) (−0.685) (−1.106) (−2.094)

PERSIST 0.000 0.000 −0.001 −0.001 −0.003 0.001
(−0.155) (−0.117) (−0.594) (−0.281) (−1.409) (0.385)

VOL 0.014 0.014 0.009 0.005 0.009 0.010
(1.281) (1.356) (1.217) (0.824) (1.207) (1.212)

SIZE −0.028* −0.023** −0.035** −0.035** −0.040*** −0.042**
(−1.697) (−2.298) (−2.216) (−2.283) (−2.789) (−2.562)

BM 0.014 0.014 0.017*** 0.011** 0.011 0.008
(1.359) (1.356) (2.755) (2.089) (1.267) (1.388)

GP 0.009 0.010 0.012* 0.008 0.006 0.008
(1.552) (1.612) (1.838) (1.237) (1.086) (1.319)

OP 0.030*** 0.030*** 0.033*** 0.031*** 0.022*** 0.027***
(3.925) (3.975) (3.896) (3.452) (3.522) (3.700)

OA 0.001 0.001 0.001 0.001 0.000 0.000
(0.322) (0.431) (0.388) (0.224) (0.002) (−0.089)

TA −0.008** −0.008** −0.004 −0.005 −0.005 −0.006
(−2.128) (−2.184) (−0.906) (−1.388) (−1.407) (−1.388)

AG −0.011** −0.011** −0.012*** −0.010** −0.008** −0.007*
(−2.373) (−2.439) (−2.633) (−2.248) (−2.026) (−1.667)

Adj. R2 0.045 0.038 0.032 0.028 0.030 0.036
obs. 240,844 240,844 240,844 240,844 240,844 240,844
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Table 6. CNN Buy Probability, Firm Characteristics, and Historical Earnings.
The table presents results of quarterly weighted Fama and MacBeth (1973) regressions in the
out-of-sample period (1994Q3-2023Q2, 116 quarters) using the CNN buy probability (CNNBP)
as the dependent variable. The weights correspond to the number of observations used in
each quarterly cross-sectional regression. The independent variables in specification 1 are
standardized unexpected earnings (SUE), earnings acceleration (EA), trend in gross profitability
(TREND), market capitalization (SIZE), book-to-market ratio (BM), earnings announcement
return (RET[−1,−1]), pre-announcement return (RET[−30,−2]), earnings persistence (PERSIST),
earnings volatility (VOL), gross profitability (GP), operating profitability (OP), total accruals (TA),
operating accruals (OA), and asset growth (AG). The independent variables in specification 2 are
the return on assets (ROA) in the most recent eight quarters (quarter q − 7 to q). All variables
are converted into scaled ranks ranging from −0.5 to 0.5 with a mean of zero. See Appendix for
variable definitions. Newey and West (1987) t-statistics with three lags are reported in parentheses,
and ***, **, and * indicate significance at the 1%, 5%, and 10% level, respectively.

(1) (2)
CNNBP CNNBP

Intercept −0.002 Intercept −0.004***
(−1.598) (−3.040)

SUE 0.510*** ROAq 0.644***
(77.045) (41.254)

EA 0.040*** ROAq−1 0.038***
(6.851) (6.965)

TREND 0.004 ROAq−2 −0.073***
(0.792) (−14.535)

RET[−1, 1] 0.050*** ROAq−3 −0.333***
(20.524) (−62.953)

RET[−30,−2] 0.024*** ROAq−4 −0.428***
(7.350) (−48.276)

PERSIST −0.044*** ROAq−5 0.079***
(−8.605) (16.625)

VOL 0.246*** ROAq−6 0.044***
(21.668) (12.322)

SIZE −0.274*** ROAq−7 −0.021***
(−18.569) (−4.567)

BM 0.037***
(5.876)

GP 0.010**
(2.155)

OP −0.023***
(−3.938)

OA 0.001
(0.186)

TA −0.019***
(−8.196)

AG 0.047***
(9.380)

Adj. R2 0.328 Adj. R2 0.300
obs. 240,844 obs. 240,043
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Table 7. CNN Buy Probability, Future Earnings Growth, and Future Three-Day
Abnormal Returns around Earnings Announcements. The table presents results
of quarterly weighted Fama and MacBeth (1973) regressions in the out-of-sample period
(1994Q3-2023Q2, 116 quarters) using one-quarter-ahead standardized unexpected earnings
(SUEq+1) or the three-day abnormal return around the next earnings announcement date
(RET[−1, 1]q+1) as the dependent variable. The weights correspond to the number of observations
used in each quarterly cross-sectional regression. The independent variables include CNN buy
probability (CNNBP), standardized unexpected earnings (SUE), earnings acceleration (EA),
trend in gross profitability (TREND), market capitalization (SIZE), book-to-market ratio (BM),
earnings announcement return (RET[−1,−1]), pre-announcement return (RET[−30,−2]), earnings
persistence (PERSIST), earnings volatility (VOL), gross profitability (GP), operating profitability
(OP), total accruals (TA), operating accruals (OA), and asset growth (AG). All variables are
converted into scaled ranks ranging from −0.5 to 0.5 with a mean of zero. See Appendix for variable
definitions. Newey and West (1987) t-statistics with three lags are reported in parentheses, and
***, **, and * indicate significance at the 1%, 5%, and 10% level, respectively.

(1) (2) (3) (4)
SUEq+1 SUEq+1 RET[−1, 1]q+1 RET[−1, 1]q+1

Intercept 0.002 0.002 0.002*** 0.002***
(0.779) (0.802) (3.564) (3.586)

CNNBP 0.113*** 0.133*** 0.004*** 0.004***
(13.731) (20.601) (4.282) (5.185)

SUE 0.377*** 0.346*** −0.002 −0.002
(30.493) (31.877) (−1.319) (−1.531)

EA −0.090*** −0.086*** 0.001 0.001
(−24.240) (−24.216) (0.866) (1.088)

TREND 0.021*** 0.024*** 0.000 0.001
(4.331) (6.614) (0.165) (1.470)

RET[−1, 1] 0.078*** 0.077*** 0.004*** 0.004***
(37.487) (37.871) (4.348) (3.899)

RET[−30,−2] 0.067*** 0.066*** 0.001 0.000
(16.162) (16.506) (0.548) (−0.110)

PERSIST 0.001 −0.002 −0.002*** −0.001**
(0.138) (−0.510) (−3.011) (−2.029)

VOL 0.009** −0.076*** −0.001 −0.002
(2.237) (−8.943) (−0.904) (−1.283)

SIZE 0.119*** 0.003
(10.848) (1.253)

BM −0.018*** 0.007***
(−3.278) (5.733)

GP 0.012** 0.006***
(2.107) (4.640)

OP −0.022*** 0.005***
(−3.443) (4.847)

OA −0.016*** 0.000
(−5.093) (0.521)

TA −0.002 −0.001
(−0.728) (−1.326)

AG −0.015*** −0.002**
(−3.934) (−2.187)

Adj. R2 0.214 0.228 0.003 0.007
obs. 237,118 237,118 236,239 236,239
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Table 8. Test of Market Efficiency for the CNN Buy Features Effect. This
table reports the regression results from nonlinear generalized least squares estimation of
the following two equations in the out-of-sample period (1994Q3-2023Q2, 116 quarters)

Forecasting equation: SUEq+1 = α + γ1CNNBPq +
∑

γcControlsq + δq+1

Pricing equation: ARq+1 = β(SUEq+1 − α∗ − γ∗
1CNNBPq −

∑
γ∗
cControlsq) + εq+1.

The control variables include standardized unexpected earnings (SUE), earnings acceleration
(EA), trend in gross profitability (TREND), market capitalization (SIZE), book-to-market
ratio (BM), earnings announcement return (RET[−1,−1]), pre-announcement return
(RET[−30,−2]), earnings persistence (PERSIST), earnings volatility (VOL), gross
profitability (GP), operating profitability (OP), total accruals (TA), operating accruals (OA),
and asset growth (AG). AR is the abnormal return from a 3-day window around quarter
q + 1’s earnings or the quarter-long window starting two days after the quarter q earnings
and ending on the next announcement date. All variables except for the abnormal return
AR are converted into scaled ranks ranging from −0.5 to 0.5 with a mean of zero. t-statistics
based on firm and quarter double-clustered standard errors are reported in parentheses. The
likelihood ratio statistic for testing γ1 = γ∗

1 is distributed asymptotically as χ2(1). ***, **,
and * indicate significance at the 1%, 5%, and 10% level, respectively.

Parameter 3-day Quarter-long

γ1 0.136*** 0.136***
(19.783) (19.816)

γ∗
1 0.062*** 0.010

(3.814) (0.233)

β 0.062*** 0.010***
(38.571) (18.547)

Market efficiency test (γ1 = γ∗
1) 3-day Quarter-long

Likelihood ratio statistic 8.218*** 21.444***
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Table IA1. CNN Buy Probability and Post-Earnings Announcement Drift: Double Sorts. This
table reports the average 63-day buy-and-hold market-adjusted return (MAR) after earnings announcements
for portfolios formed based on the CNN buy probability quintiles and one of the six firm characteristics
including pre-announcement return (RET[−30,−2]), earnings persistence (PERSIST), earnings volatility
(VOL), market capitalization (SIZE), operating profitability (OP), total accruals (TA), and operating
accruals (OA) using independent two-way sorting in the out-of-sample period (1994Q3-2023Q2, 116 quarters).
The quintile cutoffs are based on the distribution of these variables in the previous quarter. See Appendix
for variable definitions. Newey and West (1987) t-statistics with three lags are reported in parentheses, and
***, **, and * indicate significance at the 1%, 5%, and 10% level, respectively.

Panel A: Two-way sorting, controlling for pre-announcement return (RET[−30,−2])

CNN buy probability quintiles

RET[−30,−2] quintiles Low 2 3 4 High High-Low

Low 0.006 0.009 0.013 0.016 0.036*** 0.030***
(0.628) (0.849) (1.057) (1.393) (3.880) (5.139)

2 0.000 0.004 0.009 0.016** 0.020*** 0.020***
(−0.030) (0.676) (1.332) (2.385) (3.404) (5.544)

3 −0.004 0.004 0.004 0.012* 0.022*** 0.026***
(−0.811) (0.813) (0.691) (1.677) (4.187) (6.515)

4 −0.009* 0.003 0.008 0.014** 0.023*** 0.031***
(−1.750) (0.413) (1.115) (2.189) (3.979) (6.877)

High −0.016** −0.005 0.011 0.014 0.036*** 0.052***
(−2.203) (−0.551) (1.145) (1.536) (4.102) (8.324)

High-Low −0.022*** −0.015* −0.002 −0.002 0.000
(−2.659) (−1.781) (−0.216) (−0.313) (−0.047)

Panel B: Two-way sorting, controlling for earnings persistence (PERSIST)

CNN buy probability quintiles

PERSIST quintiles Low 2 3 4 High High-Low

Low −0.005 0.001 0.005 0.012 0.029*** 0.034***
(−1.033) (0.204) (0.636) (1.574) (4.461) (5.995)

2 0.000 0.008 0.015* 0.015* 0.026*** 0.026***
(−0.025) (1.067) (1.946) (1.902) (4.749) (5.770)

3 −0.005 0.009 0.009 0.017** 0.029*** 0.034***
(−0.970) (1.205) (1.128) (2.091) (4.515) (7.839)

4 −0.006 0.003 0.008 0.015** 0.025*** 0.031***
(−1.052) (0.277) (1.038) (2.081) (3.918) (5.331)

High −0.004 0.000 0.006 0.009 0.023*** 0.027***
(−0.738) (−0.065) (0.661) (1.190) (3.239) (4.647)

High-Low 0.001 −0.002 0.001 −0.003 −0.006
(0.360) (−0.424) (0.309) (−0.586) (−0.983)

Panel C: Two-way sorting, controlling for earnings volatility (VOL)

CNN buy probability quintiles

VOL quintiles Low 2 3 4 High High-Low

Low −0.005 0.001 0.005 0.012 0.029*** 0.034***
(−1.033) (0.204) (0.636) (1.574) (4.461) (5.995)

2 0.000 0.008 0.015* 0.015* 0.026*** 0.026***
(−0.025) (1.067) (1.946) (1.902) (4.749) (5.770)

3 −0.005 0.009 0.009 0.017** 0.029*** 0.034***
(−0.970) (1.205) (1.128) (2.091) (4.515) (7.839)

4 −0.006 0.003 0.008 0.015** 0.025*** 0.031***
(−1.052) (0.277) (1.038) (2.081) (3.918) (5.331)

High −0.004 0.000 0.006 0.009 0.023*** 0.027***
(−0.738) (−0.065) (0.661) (1.190) (3.239) (4.647)

High-Low 0.001 −0.002 0.001 −0.003 −0.006
(0.360) (−0.424) (0.309) (−0.586) (−0.983)
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Table IA1. CNN Buy Probability and Post-Earnings Announcement Drift: Double Sorts
(continued).

Panel D: Two-way sorting, controlling for market capitalization (SIZE)

CNN buy probability quintiles

SIZE quintiles Low 2 3 4 High High-Low

Low −0.018* 0.009 0.012 0.020* 0.056*** 0.074***
(−1.945) (0.613) (0.998) (1.837) (5.679) (13.846)

2 −0.006 0.005 0.012 0.018* 0.043*** 0.049***
(−0.939) (0.518) (1.179) (1.698) (4.934) (8.833)

3 −0.002 0.006 0.013 0.017* 0.022*** 0.024***
(−0.320) (0.828) (1.598) (1.910) (3.338) (5.235)

4 0.001 0.003 0.003 0.006 0.011** 0.010**
(0.100) (0.575) (0.685) (1.201) (2.338) (2.508)

High 0.000 −0.001 0.002 0.004 0.009** 0.009*
(−0.103) (−0.258) (0.696) (1.365) (2.203) (1.840)

High-Low 0.017** −0.010 −0.010 −0.016* −0.047***
(2.110) (−0.691) (−0.887) (−1.682) (−4.815)

Panel E: Two-way sorting, controlling for operating profitability (OP)

CNN buy probability quintiles

OP quintiles Low 2 3 4 High High-Low

Low −0.017 −0.001 0.002 0.001 0.032*** 0.049***
(−1.474) (−0.111) (0.167) (0.102) (3.234) (6.128)

2 −0.008 0.007 0.009 0.015* 0.030*** 0.037***
(−1.268) (0.886) (1.199) (1.677) (3.628) (6.455)

3 −0.005 −0.003 0.016* 0.019** 0.028*** 0.033***
(−0.887) (−0.492) (1.952) (2.503) (4.795) (8.142)

4 −0.004 0.007 0.008 0.016** 0.024*** 0.028***
(−0.787) (1.220) (1.218) (2.552) (3.784) (5.145)

High 0.004 0.010* 0.012* 0.021*** 0.023*** 0.019***
(0.810) (1.762) (1.887) (3.406) (3.486) (3.438)

High-Low 0.021** 0.012 0.010 0.020** −0.008
(2.017) (1.082) (1.288) (2.468) (−0.963)

Panel F: Two-way sorting, controlling for operating accruals (OA)

CNN buy probability quintiles

OA quintiles Low 2 3 4 High High-Low

Low −0.008 0.004 0.009 0.014 0.033*** 0.041***
(−1.071) (0.363) (0.910) (1.376) (4.291) (7.451)

2 0.001 0.006 0.010 0.014* 0.027*** 0.026***
(0.237) (0.846) (1.325) (1.909) (4.200) (4.839)

3 −0.004 0.004 0.015* 0.018** 0.025*** 0.029***
(−0.735) (0.752) (1.896) (2.195) (3.969) (7.300)

4 −0.004 0.007 0.006 0.015** 0.027*** 0.031***
(−0.820) (0.975) (1.055) (2.560) (4.901) (7.319)

High −0.007 −0.003 0.004 0.009 0.027*** 0.034***
(−1.184) (−0.362) (0.452) (1.235) (4.195) (7.041)

High-Low 0.001 −0.007 −0.006 −0.006 −0.006
(0.176) (−0.848) (−1.038) (−0.813) (−1.217)
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Table IA1. CNN Buy Probability and Post-Earnings Announcement Drift: Double Sorts
(continued).

Panel G: Two-way sorting, controlling for total accruals (TA)

CNN buy probability quintiles

TA quintiles Low 2 3 4 High High-Low

Low −0.008 0.012 0.009 0.009 0.037*** 0.045***
(−0.894) (0.910) (0.828) (0.831) (4.012) (6.271)

2 −0.003 −0.001 0.011 0.017** 0.031*** 0.033***
(−0.415) (−0.073) (1.299) (2.207) (4.606) (7.087)

3 −0.002 0.002 0.009 0.015** 0.027*** 0.029***
(−0.335) (0.333) (1.448) (2.073) (3.879) (6.916)

4 −0.003 0.004 0.011* 0.021*** 0.027*** 0.030***
(−0.656) (0.902) (1.781) (3.112) (4.469) (6.644)

High −0.005 −0.002 0.004 0.008 0.017*** 0.022***
(−0.956) (−0.348) (0.538) (1.282) (2.833) (4.321)

High-Low 0.003 −0.014 −0.005 −0.001 −0.021***
(0.375) (−1.449) (−0.811) (−0.169) (−3.186)
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