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Abstract

We construct a deep learning model to test whether Al can learn from visual depictions
of earnings and earnings quality. Quarterly earnings series are transformed into bar-
chart images, with bar height representing earnings levels and shading reflecting
earnings quality. To avoid look-ahead bias, the model is trained from scratch on corpora
excluding references to prior return-prediction research. The model predicts post-
earnings announcement returns out-of-sample, with accuracy improving substantially
when shading incorporates earnings quality. Predictions based on visualized earnings
also outperform trend-detectable models such as Long Short-Term Memory (LSTM)
and Temporal Fusion Transformers (TFT). The predictive power of the unshaded model
is largely explained by standardized unexpected earnings (SUE) and earnings
acceleration, while the shaded model’s ability, though partly related to SUE and gross
profitability, remains largely unexplained. Overall, we show that visual depictions of
earnings and earnings quality forecast returns beyond established prediction models,

highlighting the value of combining accounting insights with Al-driven visualization.
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“If I can’t picture it, I can’t understand it.” —Albert Einstein

1 Introduction

Human brains process visual information more quickly than textual or numerical
data, often interpreting visual stimuli instantaneously. Tools like graphs, charts, and
infographics distill complex information into easily digestible formats, revealing
patterns that may remain hidden in tables or raw numbers. The importance of
visualization in financial reporting was highlighted by former SEC Chairman
Christopher Cox, who remarked that “the visual presentation of information is such a
key element of making disclosure understandable to investors” (SEC, 2007). Reflecting
this advantage, financial disclosures increasingly incorporate visual elements to
improve accessibility and engagement for diverse stakeholders, particularly investors.
Recent research underscores this trend. For example, Christensen et al. [2024]
document a significant increase in the use of visuals and infographics in 10-K filings,
signaling a shift toward visual communication in financial reporting. Similarly,
Nekrasov et al. [2021] demonstrate that earnings announcements enhanced with visuals
attract greater investor attention, as evidenced by higher engagement metrics such as
retweet volumes on platforms like Twitter.

Simultaneously, advancements in Al and machine learning have introduced
powerful tools for analyzing and interpreting financial statements. Recent research
illustrates the usefulness of Al in this regard: Brown et al. [2020] employ a Bayesian
topic-model algorithm to link specific topics in 10-K filings to financial misreporting
risks; Bao et al. [2020] develop a machine learning model that predicts fraud using raw
financial data; Chen et al [2022] apply machine learning to a detailed set of financial

data to predict one-year ahead earnings changes; and Kim, Muhn, and Nikolaev [2024],



demonstrate that a large language model (LLM) can analyze income statements and
balance sheets without accompanying text and outperform analysts in predicting
earnings changes. While these studies provide compelling evidence of the usefulness
of Al at interpreting textual or numerical accounting data, the potential for analyzing
visualized accounting data remains largely unexplored.

Building on these developments, we investigate whether a trained AI model can
extract features from visualized earnings data that are predictive of post-earnings
announcement drift. Importantly, we assess whether the integration of accounting
domain knowledge into the construction of these visualizations enhances the model’s
predictive performance. Specifically, we transform firms’ historical quarterly earnings
into bar charts and employ a convolutional neural network (CNN), which is a deep
learning algorithm inspired by the human visual system, to extract predictive features. !

We begin by plotting earnings. For each firm announcing quarterly earnings from
a 20-year in-sample period (1974Q1 to 1993Q4), we plot its most recent eight quarterly
earnings in a black-and-white bar chart that visualizes the magnitude as well as the sign
of the earnings.? Next, each earnings bar chart image is paired with one of the three
labels (“sell”, “hold”, or “buy’’) based on the relative performance of the firm’s 63-day
post-announcement buy-and-hold abnormal returns among the cross-section of
announcing firms in the same quarter. We train CNN on these in-sample earnings
images for it to learn features that best distinguish between the three assigned labels.

We then create out-of-sample earnings images from 1994Q2 onward, and apply

the CNN trained model to generate the CNN buy probability (CNNBP), which can be

A unique feature of CNN is its use of two-dimensional convolutional filters to scan images, enabling
the model to capture fine details and progressively learn the relationship between an image and its
corresponding label.

Earnings bars are in white, while the background is in black. We plot raw earnings figures rather
than standardized unexpected earnings, as this approach better reflects the types of figures that firms
typically showcase during their earnings calls. The plots are standardized and scaled so that the actual
level of earnings is not discernible across different firms. See section 2 for details.
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thought of as the CNN-predicted likelihood for an image to be a “buy” when “sell” and
“hold” options are also available.® We assign firms announcing earnings into decile
portfolios based on CNN buy, where the cutoffs are based on the previous quarter
distribution of CNN buy. Each decile portfolio has an average post-earning
announcement return (cumulated over t+2 through t+64), averaged across all the firms
in that decile (that quarter). The key dependent variable for our analyses is then the
high-minus-low hedge portfolio (decile 10 minus decile 1) return. We find that the high-
minus-low hedge portfolio sorted on the CNN buy probability earns positive and highly
significant post-announcement returns.

To ascertain the relative contribution of visualization compared to simple
machine-interpretation of earnings numbers, we compare the CNN hedge portfolio
returns to a pair of well-accepted machine-learning-constructed (using strictly numbers)
hedge portfolios. The comparison techniques, used to construct buy probabilities for
two trend-detectable Al models, are LSTM and TFT, both of which use raw earnings as
inputs. We find that the hedge portfolio returns based on CNNBP are significantly larger
than those based on LSTM and TFT. These results remain robust across various
benchmarks for expected returns (i.e. various measures for buy-and-hold abnormal
returns).* This highlights the advantage of using visualized earnings data in Al-based
drift prediction.

Thus far our results, though applied to drift as a unique anomaly, are still consistent
with the benefits of visualization in predicting stock returns generally (e.g. Jiang et al.

(2023) and Murray et al. (2024)). To augment our contribution, particularly to the

3We apply the trained CNN to earnings images from 1994Q2 onward to guard against look-ahead
bias. See section 2 for details.

“We use the market-adjusted buy-and-hold returns, the size-adjusted buy-and-hold returns, and the
buy-and-hold returns adjusted by factor models including the Fama-French four- and six-factor models
(Fama and French [1993], Carhart [1997], Fama and French [2015], Fama and French [2018]), the g¢°-
model (Hou et al. [2015], Hou et al. [2021]), and the risk-and-behavioral model (Daniel et al. [2020]).
See Table 2 and the Appendix for more details.



accounting literature, we next use accounting domain knowledge to create earnings bar
charts that also reflect the quality of the reported earnings. Since earnings of high (low)
quality convey information more (less) accurately about a firm’s underlying economic
activity, we conjecture that CNN’s drift-predictive performance will be improved when
it is being trained on earnings bar charts enriched with earnings quality.

According to prior studies (e.g., Sloan [1996]; Dechow and Dichev [2002];
Penman and Zhang [2002]; Dechow and Schrand [2004]; Dechow et al. [2010]; Dichev
et al. [2013]), quality earnings should be persistent, be supported by cash flows, and
reliably predict future earnings. Hence, we employ three summary measures of the
quality of earnings: CFO (cash flow from continuing operations), IBCa (adjusted
income before extraordinary items), and OE (Dechow-Dichev operating earnings,
where all are scaled by lagged assets. Specifically, earnings corroborated by strong
operating cash flows (high CFO) as well as earnings free from transient items (high
IBCa and OE) are regarded as higher quality. To incorporate earnings quality into the
earnings bar charts, we adjust their shading (greyscale) by assigning lighter shades to
bars representing higher-quality earnings and darker shades to those representing lower-
quality earnings. CNN taking these shaded earnings images as inputs is hereafter
referred to as CNN+.

We separately train each of the three CNN+ using a 20-year in-sample period
starting from 1990Q1.° Then, we create out-of-sample earnings images for firms
announcing earnings starting from 2010Q2 onward and whose 10-K/10-Q filing is
released no later than one day after earnings announcement date. The additional filter
is introduced to ensure that all information required to plot new earnings bar charts is

available prior to making out-of-sample predictions, and thus there is no look-ahead

> We require statement of cash flows data to differentiate earnings quality, which provides the accrual
and cash components of earnings. This data broadly became available from 1988 onward. Because of
the requirement of 8 quarters for our charts, the analysis using the quality shading begins in 1990Q1.
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bias. Finally, we apply the trained CNN+ to these new shaded earnings images, to
generate the CNN+ buy probability (CNNBP+).

To assess whether the integration of additional accounting domain knowledge into
earnings bar charts enhances the model’s ability to capture drift-predictive features, we
compare the post-earnings announcement drift forecasting performance of CNNBP+
with that of CNNBP. To have a fair comparison, we train a CNN model using the same
setup as the CNN+ model, so that the only difference between the CNN model and the
CNN+ model lies in the construction of earnings bar charts. We find that the hedge
portfolios based on the CNN buy probability yield quarterly returns ranging from 2.1%
to 2.5% on average, depending on different risk-adjustments (i.e. benchmark expected
returns). In contrast, the average hedge portfolio returns based on the CNN+ buy
probability are significantly larger, ranging from 3.9% to 4.4%, 2.9% to 3.6%, and 3.0%
to 3.6% in a quarter, when CFO, IBCa, and OE are used as the earnings quality measure,
respectively. These findings provide strong support for the outperformance of the
CNN+ model relative to the CNN model.

We then turn to exploration of the drivers of the return predictability of the CNN
and CNN+ buy probabilities. To begin, we ask if predictability of them persists after
controlling for known determinants of post-earnings announcement drift. Specifically,
we estimate Fama and Macbeth [1973] regressions of post-announcement Fama-French
five-factor and momentum-adjusted buy-and-hold returns on either the CNN or CNN+

buy probability, along with 13 variables.® Our results show that the CNN+ buy

6 These “controls” include: standardized unexpected earnings (Ball and Brown [1968], Bernard and
Thomas [1989], Foster et al. [1984]); earnings acceleration (He and Narayanamoorthy [2020]); trend in
gross profitability (Akbas et al. [2017]); market capitalization (Fama and French [1992], [1993]); book-
to-market ratio (Fama and French [1992], [1993]); pre-announcement return (Carhart [1997]); earnings
persistence (Francis et al. [2004]); earnings volatility (Cao and Narayanamoorthy [2012]); gross
profitability (Novy-Marx [2013]); operating profitability (Ball et al. [2016]); operating accruals (Sloan
[1996], Hribar and Collins [2002]); total accruals (Richardson et al. [2005]); and asset growth (Cooper
et al. [2008]).



probability that uses accounting domain knowledge to indicate earnings quality,
provides incremental predictability for post-earnings announcement drift beyond the 13
variables, whereas the baseline CNN buy probability does not. In short, accounting
domain expertise is particularly valuable within the context of machine learning
visualization tools to predict post-earnings announcement drift.

What does this imply about CNN(+)’s visual learning, and how much of it is
related to these factors vs independent of them? To explore which of these extant drift-
predictive features are utilized by CNN and CNN+, we employ the decomposition
methodology of Hou and Loh [2016]. Applying their 3-step process to our setting
allows to estimate the fraction of CNNBP’s (CNNBP+’s) drift predictability that is
attributable to either an extant-explainer of drift, or a residual. In short, each of the 13
typical explainers of drift is assessed (independently) as a potential driver of the
CNNBP(+) relationship with drift in our sample. The residual in each assessment
captures the fraction that remains unexplained. We find that standardized unexpected
earnings (SUE) explains 63.8% of CNNBP’s return predictability, followed by earnings
acceleration (EA) at 37.1%. SUE and EA also contribute to the drift predictability of
three versions of CNNBP+, ranging from 31.4% to 37.3% and from 14.1% to 20.2%,
respectively.

More importantly, the Hou and Lo [2016] methodology can be applied in a
multivariate setting. When we include all 13 (extant drift-explaining) variables in their
framework, we can evaluate the marginal contribution of each candidate variable and
the total fraction of the CNNBP’s (or CNNBP+’s) drift predictability by these variables
collectively. We find that SUE and EA continue to be the main contributors to the drift
predictability of CNNBP, and only 14.6% of the return predictability of CNNBP is left
unexplained by the 13 variables. On the other hand, SUE and gross profitability (GP)
are the primary explanatory variables for the CNNBP+’s return predictability, but the
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fraction of the drift predictability of CNNBP+ left unexplained is large (ranging from
41.8% to 60.6%) and statistically significant at the 1% level. In other words, when we
incorporate accounting domain expertise to adjust the earnings bar charts to reflect
earnings quality, we uncover substantial predictive information that has not been
previously shown to explain post-earnings announcement drift.

Our study makes several contributions to the literature. First, we add to a growing
literature studying the applications of machine learning techniques in financial
statement analysis (e.g., Brown et al. [2020], Bao et al. [2020] Chen et al. [2022], Kim
et al. [2024]) and returns prediction (Rapach et al. [2013], Kelly et al. [2019], Feng et
al. [2020], Freyberger et al. [2020], Kozak et al. [2020], Gu et al. [2020], Gu et al.
[2021], Leippold et al. [2022], Cao et al. [2024], Chen et al. [2024], Murray et al.
[2024]). The key differentiating feature of our approach from the above studies is that
our input focuses on how machine learning can use visual representations of earnings,
as well as accounting knowledge, to predict post-earnings announcement drift.

Second, we contribute to two strands of emerging literature studying visualized
accounting data. The first strand of literature investigates why firms present visualized
data in their disclosures more often, and how such visuals are interpreted by investors.
For example, Christensen et al. [2024] document a significant increase in the disclosure
of infographics in 10-K filings over time and investigate the relation between the use
of infographics and uncertainty in capital markets. Nekrasov et al. [2022] find that
visuals in firms’ Twitter earnings announcements are associated with more retweets,
representing increased attention to the earnings news. Moss [2022] finds that retail
investors use their visual perception of earnings surprise displayed on Robinhood rather
than the unexpected earnings scaled by stock price in their investment decisions. The
second strand of literature examines whether one can extract useful information from

these visualized data. For example, Hu and Ma [2024] quantify persuasion in visual,
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vocal, and verbal dimensions in start-up pitch videos, and find that passionate and warm
pitches significantly increase funding probability. Cao et al. [2024] examine the value
of visual information provided in corporate executive presentations and use Al to
categorize the types of charts presented as forward looking or summarizing and
examine how market participants respond to such information. Gu et al. [2023] find
that a daily firm-level investor sentiment measure based on graphics interchange format
images (GIFs) in postings about firms on Stocktwits.com is positively correlated with
same-day stock returns while predicting stock return reversals in the following two
weeks.

Our paper differs from the existing literature in two key aspects. First, instead of
analyzing pre-existing visualized accounting data, we propose a universal, ground-up
approach to visualize a firm’s time-series of quarterly earnings into a bar-chart image,
and train Al on these earnings images to examine whether it can extract relevant
information for predicting post-earnings announcement drift. Second, while most
studies show how Al outperforms humans in extracting information to make predictions
(one notable exception is Cao et al. [2024], who show that the integration of analyst
and machine learning intelligence results in improved stock return predictions), we
highlight humans’ relative advantages by leveraging accounting domain knowledge to
create “informative” earnings images, aiming to enhance the AI’s learning outcomes.
Specifically, we embed earnings quality (EQ) information through variation in bar
shading based on established EQ measures in the literature. Notably, we train Al on
these shaded earnings bar-chart images to automatically learn associations between the
visuals and post-announcement return labels, without telling the AI that height
corresponds to earnings and that shading reflects EQ. Then, we show that Al trained on
earnings images shaded with EQ significantly outperforms Al trained on unshaded

earnings images in predicting post-earnings announcement drift. We believe that the
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integration of domain expertise—specifically, the understanding that earnings quality
influences investor reactions and how one can reliably measure it—with a visual
technique that allows Al to capture this information, adds a novel contribution to the
literature.

Last, we contribute to a burgeoning literature employing CNN to make predictions.
For example, Obaid and Pukthuanthong [2022] extract information from a large sample
of news media images and translate that information into a daily investor sentiment
index. Jiang et al. [2023] extract return-predicting information from stock-level charts
depicting daily open, close, high, and low prices, as well as trading volume and average
prices over a past period, to forecast future returns. Murray et al. [2024] show that a
one-dimensional CNN trained on historical returns can strongly predict the cross-
section of future stock returns. Our work differs in two ways. First, we focus on
predicting the post-earnings announcement drift as opposed to daily or monthly returns.
Second, although previous studies explore whether the return predictability of CNN-
based signals is subsumed by certain variables, they do not quantify the contributions
of these variables. In contrast, we apply an econometric framework that allows us to
assess both the magnitude and statistical significance of the extent to which the drift
predictability based on CNN predictions can be attributed to known drift predictors and
return anomalies in the PEAD literature. In addition, this methodology allows us to
shed light on how incorporating human knowledge enhances the ability of CNN models

to explain post-earnings announcement drift.

2. Visualizing Earnings, Training, and Prediction

In this section, we introduce the CNN training procedure, which can be thought of
as an image classification task. First, for firms announcing earnings in the in-sample

period (1974Q1 to 1993Q4), we transform their time series of earnings into bar charts,
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and assign one of the three labels (i.e., “sell”, “hold”, or “buy”) to each earnings bar-
chart image based on the relative performance of its post-earnings announcement
returns among the cross-section of firms in the same quarter. Next, we train CNN to
“learn” the relationship between these earnings bar-chart images and their assigned
labels. Lastly, we create earnings bar-chart images for firms announcing earnings from
1994Q2 onward and employ the trained CNN to generate the probability for these

images to be classified as a “buy”.

2.1 Plotting earnings images and assigning labels

2.1. Plotting earning images

We begin by plotting the most recent eight quarterly earnings in bar charts. Our
intent was to create a simple chart that would be roughly analogous to what might be
presented in earnings conference call. For example, Figure 1, panel A provides a slide
from Meta’s 2024 Q3 earnings call where they display nine quarters of past earnings.
Rather than have the CNN attempt to classify the variety of earnings images generated
by firms, we provide a set of standardized charts for the CNN to train on and process.
Following Jiang et al. [2023], we generate black-and-white rather than colored images
for simplicity and uniformity. Each black-and-white image is of size 24 x 24 pixels,
which is recognized by the machine as a 24 x 24 matrix of 0 (black pixel) and 255
(white pixel). We use black as the background color and white as the color for earnings,
and the constant image size setup is for better comparison of earnings patterns across
different firms in different quarters. Figure 1, Panel B provides an example of Meta’s
2024 Q3 earnings in our standardized format.

Each quarter occupies 24 x 3 pixels in the image, and quarterly earnings are plotted

as “white bars” in the middle column of each quarter. Based on the signs of the most

11



recent eight quarterly earnings, we categorize the earnings images into three types: Type
1, where all quarterly earnings are non-negative; Type 2, where the maximum quarterly
earnings is positive and the minimum quarterly earnings is negative; and Type 3, where
all quarterly earnings are non-positive. Figure 2 shows Images 1, 2, and 3 as
representative examples of Types 1, 2, and 3 earnings images, respectively. In Appendix
A, we describe the details of plotting earnings images. For each firm announcing
earnings in a given quarter q during the in-sample period (1974Q1-1993Q4), we create
its earnings image using the firm’s earnings in the most recent eight quarters (quarters

q-7 to q).

2.1.2 Assigning labels to earnings images

Next, we assign each earnings image a label indicative of the firm’s post-
announcement return performance. Specifically, we sort firms announcing earnings in
the same quarter into terciles based on their 63-day post-announcement market-adjusted
buy-and-hold returns (MAR).” An earnings image is labeled as “sell,” “hold,” or “buy”
if its MAR falls into the bottom, middle, or top tercile, respectively. Since the number
of training images for each label is about the same, we mitigate the class imbalance
issue in CNN training that arises with a disproportionate ratio of labels.

In particular, MAR; ;. is defined as the difference between the buy-and-hold
return of firm i and that of the CRSP value-weighted market portfolio over the
windows [+2, +64] in trading days relative to firm i’s earnings announcement date t

in quarter q:

7 In untabulated tests, we find that the final CNN out-of-sample performance is robust to using
alternative definitions of abnormal returns such as size-adjusted or factor-adjusted returns in the label-
assigning process.
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t+64 t+64

MAR; 441 = 1_[ (1+Riyx) — 1_[ (1+ Rup) » (D

k=t+2 k=t+2

where R; is the delisting-adjusted return of firm i, R, is the return of the CRSP
value-weighted market return, and t is quarter g’s announcement date of firm i.
The 63-day holding window corresponds to the total number of trading days in three
months. We follow previous studies (Vega [2006], Engelberg et al. [2012], Frank and
Sanati [2018]) to compute MAR from day 2 to mitigate the impact of bid-ask bounce
and other market microstructure effects, and our results are robust to MAR defined

using the trading window of [+1, +63].

2.2 Training the CNN

Next, we train CNN on these earnings images (along with their assigned labels).
We use three CNN building blocks, with the first block consisting of 64 convolutional
filters of 7 x 7 pixels, the second block consisting of 128 convolutional filters of 3 x 3
pixels, and the third block consisting of 256 convolutional filters of 3 x3 pixels. During
training, we follow the CNN literature to use the cross-entropy loss function as the loss
function for minimization, randomly select 70% earnings images for training and the
other 30% for validation, and adopt similar regularization procedures in Gu et al. [2020]
and Jiang et al. [2023] to prevent overfitting.” To conserve space, we report the detailed
model architecture and training process in the Internet Appendix.

Note that the CNN is trained on historical earnings images with assigned return

labels between 1974Q1 to 1993Q4, which requires return information between 1974Q1

8 We replace missing delisting-adjusted returns with market returns, which is equivalent to
reinvesting any remaining proceeds in the market portfolio until the end of the holding period.

"We describe the modeling choices in the Internet Appendix. Interested readers may refer to Gu et al.
[2020] for detailed explanations on those modeling choices.
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to 1994Q1.'° In addition, since CNN training can yield different outcomes even when
using the same architecture and dataset due to the stochastic nature of optimization
algorithms and the application of dropout, we independently train the same CNN ten

times (ensemble size = 10) and store their parameters for subsequent use.

2.3 Applying the Trained CNN for Prediction

Having trained the CNN on earnings images from the in-sample period, we apply the
stored parameters that encapsulate the model’s learned knowledge of the relationship
between an earnings image and its corresponding label to out-of-sample earnings
images. The trained CNN can generate for each out-of-sample earnings image the
probability of being classified as “buy”, our label of interest. We refer to this predicted
likelihood as the CNN buy probability (CNNBP).

Next, for firm announcing earnings between 1994Q2 to 2023Q2, we create their
earnings images using their most recent eight quarters’ earnings (quarters g-7 to q) and
employ the trained CNN to generate CNNBP for these earnings images. Since the
trained CNN is based on information through 1994Q1, we generate CNNBP for
earnings images from 1994 Q2 onward to ensure that all predictions occur strictly after
the training process. As a result, there is no forward-looking bias.!! In addition, for
each out-of-sample earnings image, we average the CNNBP generated by the ten

independently trained CNN, which helps achieve better accuracy and robustness.

YForming post-announcement 63-day return labels for earnings images in 1993Q4 requires return
information in 1993Q4 and 1994Q1.

1To avoid hindsight bias, when forming out-of-sample predictions on the 63-day ([+2, +64]) post-
announcement returns for a given firm announcing earnings in quarter g, one should only use information
available up to one day after its earnings announcement date in quarter q.
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3. Data and Variables

We focus on U.S. common stocks traded on NYSE, AMEX, and NASDAQ, and
obtain data from Compustat and CRSP. First, we collect Compustat firm-quarters
whose earnings announcement date (Compustat item RDQ) is between January 1974
and June 2023 and delete observations with missing RDQ in the most recent eight
quarters (quarters g — 7 to q). Next, we apply filters in He and Narayanamoorthy
[2020] to eliminate announcements that are potentially subject to data errors. In
particular, we delete observations if in the most recent eight quarters, a firm has (i) more
than one earnings announcement on any date (ii) earnings announcement date within
30 days of a previous earnings announcement date, or (iii) earnings announcement
either prior to or more than 180 days after the corresponding fiscal period-end.

We require a firm to have non-missing earnings in the most recent eight quarters
and a CRSP daily price higher than one dollar at the most recent earnings announcement
date (quarter g). We use income before extraordinary items (Compustat item IBQ) as
earnings. Financial and utility firms with SIC codes from 6000 to 6999 and from 4900
to 4949 are excluded. In addition, firms are required to have non-missing market
capitalization (SIZE) and non-negative book-to-market ratio (BM) and have at least 90
non-missing daily return observations in the [-150, —31] window relative to the current
quarter earnings announcement date. We are left with 403,880 firm-quarter
observations after applying all the above filters.

Next, we describe the in-sample dataset and the out-of-sample dataset. The in-
sample dataset is used for model training, and the out-of-sample dataset is used for
testing the out-of-sample CNN performance. For Table 2, the in-sample dataset consists
of 124,341 firm-quarter observations between 1974Q1 to 1993Q4, while the out-of-

sample dataset consists of 239,012 firm-quarter observations between 1994Q3 to
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2023Q2 with non-missing firm characteristics.'? For Tables 3 to 6, the in-sample
dataset consists of 191,118 firm-quarter observations between 1990Q4 to 2009Q4,
while the out-of-sample dataset consists of 43,734 firm-quarter observations between
2010Q3 to 2023Q2 with non-missing firm characteristics and whose current quarter’s
10-K/10-Q filing is released no later than one day after earnings announcement date to
ensure the availability of other accounting data.

Note that we impose a three-quarter lag between the end of the in-sample period
and the start of the out-of-sample period. This is because for all empirical analyses
throughout the paper we focus on the decile ranks of CNNBP, and we use the
distribution of CNNBP in the previous quarter to determine the cutoff points. In other
words, when the final quarter of the in-sample period is quarter ¢, we can generate
CNNBP (CNNBP decile ranks) free from look-ahead bias for earnings images
beginning in quarter g+2 (g+3).

We summarize the definitions of all the variables used in this study, in Appendix
B. To mitigate the impact of outliers, we transform most variables into decile ranks
(numbered 0 to 9, from low to high) following prior research (e.g., Rangan and Sloan
[1998], Livnat and Mendenhall [2006], Garfinkel and Sokobin [2006]).!* The cutoff
points for quarterly variables are based on the distribution of these variables in the
previous quarter, and the cutoff points for annual variables from July in year ¢ to June
in year ¢ + 1 are based on the distribution of these variables at the end of June in year ¢.
Then, we convert all the decile ranks to scaled ranks by dividing by 9 and subtracting

0.5. The resulting scaled ranks vary from —0.5 to 0.5 with a mean of zero and a range

2The firm characteristics include SUE, EA, TREND, PASTRET, PERSIST, VOL, GP, OP, OA, TA,
and AG. Along with BM and SIZE, these firm characteristics are used as comparing/control variables
throughout the paper. See Appendix B for variable definitions.

3Variables that are not transformed into decile ranks are the six measure of the 63-day post-
announcement buy-and-hold abnormal return (BHAR), including market-adjusted return (MAR), size-
adjusted return (SAR), and four factor-adjusted returns (FF4, FF6, HMXZS5, and DHS3).
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of one. This variable transformation approach is to facilitate comparison of the
economic magnitudes of firm characteristics. For example, the coefficient on a variable
of interest (in scaled rank) in a return regression represents the return from a zero-
investment strategy of going long on the highest variable decile and short on the lowest

variable decile.

4. CNN Performance

4.1 Portfolio Analysis

If CNN is capable of detecting the features of earnings images that are indicative
of post-earnings announcement performance, firms with higher CNN buy probability
should outperform firms with lower CNN buy probability in post-earnings
announcement returns. To test this hypothesis, we assign firms announcing earnings
into decile portfolios based on their CNN buy probability, where the cutoffs are based
on the distribution of the previous quarter’s CNN buy probability. This approach
prevents hindsight bias from classifying firms into portfolios based on information not
available at the time the strategy is implemented (Foster et al. [1984], Bernard and
Thomas [1989]). Hence, while the CNN buy probability can be generated without
hindsight bias starting from 1994Q2, our empirical analysis focuses on the period from
1994Q3 onward, during which the CNN buy probability can be reliably transformed
into decile ranks.

Next, we compute the average difference in 63-day post-announcement MAR
between firms in the highest CNN buy probability decile and firms in the lowest CNN
buy probability decile and report the results in Table 2. Panel A indicates that the
average difference in MAR is 3.5% (t-statistic = 6.990) in a quarter, which corresponds

to an annualized return of 14%. To ensure that the results are robust to alternative risk
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adjustments, we proceed to examine the average difference in size-adjusted (SAR) and
factor-adjusted buy-and-hold returns between the highest and lowest CNN buy
probability deciles.

SAR is defined as the difference between the buy-and-hold return of an
announcing firm and that of a size-matched portfolio over the 63-day window ([+2,
+64]) following its earnings announcement date. We use the monthly NYSE size decile
breakpoints at the end of June in year t to determine the size-matched portfolio for a
firm whose earnings announcement date is between July of year t to June of year t +
1. Monthly size breakpoints and daily size portfolio returns are obtained from Kenneth
French’s website.

To compute the 63-day factor-adjusted buy-and-hold returns, we replace Ry in
equation (1) with daily return R’;k predicted by factor models. To compute R’;k, we
first estimate individual stock factor loadings by regressing returns on the factors on a

120-day rolling window from t — 150 to t — 31 for each stock:

Tt = a; + ﬁi,Ft + €t 2)

where 1;, is the excess return on stock i and F; is a vector of factors. The predicted
return R’;k is then computed as [?Tle.14 In particular, we consider the factors in the
Fama-French four- and six-factor models (Fama and French [1993], Carhart [1997],
Fama and French [2015], Fama and French [2018]), the q>-model (Hou et al. [2015],
Hou et al. [2021]), and the risk-and-behavioral model (Daniel et al. [2020]). The 63-
day factor-adjusted buy-and-hold returns following an earnings announcement of these

models are denoted FF4, FF6, HMXZ5, and DHS3, respectively. '

14See, for example, Savor [2012] and Kapadia and Zekhnini [2019].

SFama and French [2015] extends the Fama-French three-factor model (Fama and French [1993])
to control for operating profitability (RMW) and investment (CMA). After the inclusion of a momentum
factor (Carhart [1997]), we have Fama-French four-factor and six-factor models (Fama and French
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Returning to Table 2, the rest of columns in Panel A present qualitatively similar
results: the average return differential between the highest and lowest CNN buy
probability deciles in SAR or factor-adjusted buy-and-hold returns (FF4, FF6, HMXZS5,
and DHS3) range from 3.1% to 3.5%, with #-statistics all statistically significant at the
1% level. Overall, Panel A of Table 2 shows a significantly positive relation between
CNN buy probability and post-announcement buy-and hold abnormal returns that are

robust to various risk adjustments. '®

4.2 Comparison with Alternative Deep Learning Models

While Panel A of Table 2 indicates that CNN exhibits decent return-predicting
performance in the out-of-sample period, a natural question arises: what value is added
by manually converting raw earnings into two-dimensional images? For example, one
may consider using trend-detectable models such as Long Short-Term Memory (LSTM)
or Temporal Fusion Transformers (TFT) to analyze the raw data directly, bypassing the
need for humans to convert raw data into images.

To answer the question, we train LSTM and TFT with firms’ most recent eight
quarterly earnings (along with the assigned “sell”, “hold”, or “buy” label) in the same
in-sample period. Earnings are divided by lagged assets to enhance cross-sectional
comparability. Then, for each of the three models we analogously generate “buy

probability” for earnings images in the same out-of-sample period, form decile

[2018]). Hou et al. [2015] propose the g-model to control for market, size (ME), investment (IVA), and
profitability (return on equity, ROE), and Hou et al. [2021] further includes an expected growth factor
(EG) into the g°>-model. Daniel et al. [2020] propose a 3-factor risk-and-behavioral model that accounts
for market, long-term financing (FIN), and short-term earnings surprise (PEAD). Fama-French factors
are obtained from Kenneth French’s website, q°>-model factors are obtained from Lu Zhang’s website,
and DHS3 factors are obtained from Lin Sun’s website.

16 The results are qualitatively the same if we assign earnings images with labels based on firms’
21-day or 42-day post-announcement market-adjusted buy-and-hold returns, train CNN on these images,
and examine the 21-day or 42-day post-announcement buy-and-hold abnormal returns for CNN buy
probability deciles.
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portfolios accordingly, and report the average return differential in 63-day post-
announcement buy-and-hold abnormal returns between the highest and lowest buy
probability deciles. We describe the modeling choices for both models in the Internet
Appendix.

Panels B and C report the results for LSTM and TFT, respectively. We find that
the average return differences in post-announcement buy-and-hold abnormal returns
are significantly positive, suggesting that both models can detect useful features from
the time-series of earnings that are related to post-announcement performance.
However, Panels D and E show that the average hedge returns based on CNN are
significantly larger than those based on each of the three models in the out-of-sample
period. The results suggest that CNN combined with image representation of historical
earnings produces more information useful in prediction post-earnings announcement

drift.

5. Incorporating Accounting Knowledge into CNN

5.1 Variation in Bar Charts Using Earnings Quality

Results from the previous sections suggest that CNN outperforms alternative deep
learning models in predicting post-earnings announcement drift. Next, we seek to
leverage our domain expertise in accounting to create more informative visual
representations of earnings images for the machine learning. We believe that the drift-
predicting power of CNN can be further enhanced when input bar charts are enriched
with information that provides visual clues about the quality of the earnings bars that
we graphed. Specifically, we expect that the hedge portfolio return sorted on CNNBP
will be larger when input bar charts are constructed to not only reflect earnings levels,

but also to reflect accounting-relevant information.
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We incorporate the concept of earnings quality into the construction of earnings
bar charts. While earnings provide information about an enterprise’s financial
performance during a given period (Statement of Financial Accounting No.1), they do
not, in isolation, convey anything about persistence or quality of the reported figures.
According to the literature (e.g., Sloan [1996]; Dechow and Dichev [2002]; Penman
and Zhang [2002]; Dechow and Schrand [2004]; Dechow et al. [2010]; Dichev et al.
[2013]), high quality earnings accurately reflect a firm’s core business operations and
tend to repeat themselves in the future. In other words, high-quality earnings should be
backed by operating cash flows and serve as useful predictors of future earnings.

Motivated by these prior studies, we consider the following three earnings quality
measures (all scaled by lagged assets). The first earnings quality measure is cash flow
from continuing operations (CFO), defined as cash flow from operating activities less
cash flow from extraordinary items and discontinued operations (e.g. Sloan 1996).
Earnings consist of an accrual and a cash flow component, and earnings are more likely
to persist if they are backed by higher cash flows from continuing operations. By
contrast, accruals are associated with lower persistence and deemed lower quality
(Sloan [1996], Dichev et al. [2013]). As a result, higher CFO represents higher earnings
quality.!”

The second and third earnings quality measures are two variables defined in Ball
and Nikolaev [2022]: adjusted income before extraordinary items (IBCa) and Dechow-
Dichev operating earnings (OE), with higher values representing higher earnings
quality. IBCa removes non-operating items (e.g., depreciation and amortization) that

have no future operating cash flow equivalent from income before extraordinary items

17 We tired several additional measures of quality to augment the earnings bars, including change in
inventory, change in accounts receivable, special item accruals, an indicator for meet-or-beat, and
changes in R&D spending. None of these measures significantly improved the CNN+ model’s ability to
predict returns.
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as reported in cash flow statements (IBCa), while OE is defined as the sum of operating
cash flows and working capital accruals following Dechow and Dichev [2002]. The two
variables can be viewed as the accruals-based earnings versions that remove transitory
items and closely align with operating cash flows. Ball and Nikolaev [2022] find that
both variables dominate operating cash flows in predicting future cash flows.

We need to add variation in the bar charts that reflect earnings quality in addition
to earnings numbers. We follow the previous approach to create earnings bar-chart
images, but now fill each earnings bar with different shades of grey to signal the firm’s
earnings quality in the given quarter. Specifically, we transform the earnings quality
(i.e., CFO, IBCa, or OE) of a firm’s quarterly earnings into deciles, where the cutoff
points are based on the distribution of these variables from the same quarter of the
previous year.!® Quarterly earnings in the lowest earnings quality decile (decile 1) are
filled with dark grey (pixel value = 26), while quarterly earnings in the highest earnings
quality decile (decile 10) are filled with white (pixel value = 255). The pixel value
alternately increases by 25 and 26 as the earnings decile increases. If a firm’s earnings
quality cannot be computed in a given quarter due to missing data, we assign an
earnings quality decile of 5.5. Its pixel value is set to 140, which is the midpoint
between the pixel value of decile 5 (= 128) and the pixel value of decile 6 (= 153).

Panel A of Figure 3 presents the color used to fill each earnings bar-chart image
for each earnings quality decile, with the pixel values being higher for higher earnings
quality deciles. Panel B displays three example bar-chart images, based on the provided
earnings and earnings quality deciles from the most recent eight quarters, with the most
recent eight quarterly earnings of the three images being the same as those in Figure 2

to foster comparison. We see that the new earnings bar-chart image with different

13This better reflects the effect of the integral approach to quarterly reporting. See, for example,
Rangan and Sloan [1998] and Collins and Hribar [2000].
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shadings allows machines to “see” both the evolution of quarters earnings along with

their earnings quality in a straightforward way.

5.2 Model Performance: CNN vs. CNN+

In this section, we compare the drift-predicting performance of CNN based on
original bar charts with that of CNN based on new bar charts incorporating earnings
quality. To distinguish between the two, we refer to the latter as the “CNN+” model and
denote the buy probability generated by CNN+ as the CNN+ buy probability
(CNNBP+).

We separately train CNN and CNN+, using an in-sample period spanning from
1990Q4 to 2009Q4. We begin the training period in 1990Q4 for the following reasons.
First, the construction of the three earnings quality variables requires data from cash
flow statements, which are largely unavailable prior to 1988Q1 in Compustat. Second,
determining the cutoffs for earnings quality in quarter q requires the distribution of
earnings quality in quarter g-4. As a result, 1989Q1 (four quarters after 1988Q1) is the
first quarter for which earnings quality deciles can be established, and 1990Q4 (eight
quarters after 1989Q1) is the first quarter in which we can construct shaded earnings
bar charts. We follow the same model architecture and regularization procedures as
those in Section 2.

In each quarter between 2010Q2 and 2023Q2, we create earnings images for firms
announcing earnings and whose 10-K/10-Q filing is released no later than one day after
earnings announcement date.'” We apply this filter to eliminate potential look-ahead

bias because firms do not always release earnings announcements concurrently with

®The in-sample training period is based on historical earnings images and labels between 1990Q4
to 2009Q4, which were constructed using information available between 1990Q1 to 2010Q1. Hence, we
start creating earnings images and making predictions from 2010Q2 onward.
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their 10-Q/10-K filings. This procedure ensures that the new bar charts can be reliably
constructed prior to generating out-of-sample predictions, as our post-announcement
return accumulation period (i.e., [+2, +64]) commences two days after earnings
announcement date. Finally, we apply the stored parameters of the previously trained
CNN and CNN+ to these earnings images to generate CNN buy probability and CNN+

buy probability, respectively.

5.2.1 Portfolio analysis

We follow similar procedures in Section 4 to conduct portfolio analysis. we assign
firms announcing earnings into decile portfolios based on their CNN buy probability
and CNN+ buy probability, where the cutoffs are based on the distribution of the
previous quarter’s CNN buy probability and CNN+ buy probability, respectively. Our
out-of-sample portfolio analysis thus focuses on the period from 2010Q3 to 2023Q2,
during which CNN buy probability and CNN+ buy probability can be reliably
transformed into decile ranks. Then, we examine the average return differences in 63-
day post-announcement buy-and-hold abnormal returns between the highest and lowest
CNN buy probability or CNN+ buy probability deciles.

Table 3 reports the results. Panel A shows that the average hedge portfolio returns
based on the CNN buy probability range from 2.1% to 2.5% in a quarter depending on
different risk-adjustments, with #-statistics all statistically significant at the 1% level.
This result provides evidence on the drift-predicting performance of CNN. However,
in Panels B to D we find that the average hedge portfolio returns based on the CNN+
buy probability are larger in magnitude, ranging from 3.9% to 4.4%, 2.9% to 3.6%, and
3.0% to 3.6% in a quarter when using CFO, IBCa, and OE as the earnings quality

measure, respectively. In Panels E to G, we confirm that the average differences in
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hedge portfolio returns between portfolios sorted on CNN buy probability and those
sorted on CNN+ buy probability are statistically significant.

Figure 4 depicts the hedge portfolio return (based on FF6) for each model over
time during the out-of-sample period. First, we find that the hedge portfolio return is
positive in 37, 45, 43, 44 out of the 52 quarters for CNN and CFO, IBCa, and OE
versions of CNN+, respectively. In other words, after controlling for the market, size,
value, profitability, investment, and momentum effect, firms in the highest CNNBP+
decile outperform those in the lowest CNNBP+ decile during the 63-day post-
announcement period in 82.7% to 86.5% of the quarters. In contrast, firms in the highest
CNNBP decile outperform those in the lowest CNNBP decile in only 71.2% of the
quarters.

As a robustness check, we employ an alternative in-sample period from 1990Q4
to 2014Q4 and an out-of-sample period from 2015Q3 to 2023Q2, perform the same
portfolio analysis, and report the results in Table IA1 in the Internet Appendix. We find
that the average hedge portfolio returns based on the CNN buy probability range from
1.9% to 2.7%, while those based on the CNN+ buy probability generated by CFO, IBCa,
and OE versions of the CNN+ model are significantly larger, ranging from 3.1% to
4.0%, 3.9% to 4.9%, and 3.6% to 4.6%, respectively.?’

Overall, the findings provide encouraging evidence for the added value of

accounting domain knowledge.

5.2.2 Cross-sectional regressions

We next perform a cross-sectional regression analysis to simultaneously control

for the firm characteristics that may affect the positive relation between the CNN buy

20Figure 1A1 in the Internet Appendix depicts the hedge portfolio return (based on FF6) for each
model over time during this out-of-sample period (2015Q3 to 2023Q2).
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probability (or the CNN+ buy probability) and post-earnings announcement drift. We
first consider three earnings attributes: standardized unexpected earnings (Ball and
Brown [1968], Bernard and Thomas [1989], Foster et al. [1984]), earnings acceleration
(He and Narayanamoorthy [2020]), and trend in gross profitability (Akbas et al. [2017]).
Standardized unexpected earnings (SUE) is the earnings surprise based on a seasonal
random walk model, earnings acceleration (EA) captures the change in earnings growth
from one quarter to the next, and trend in gross profitability (TREND) characterizes the
recent path in a firm’s profitability in addition to the profit level.

In addition to the three earnings attributes, we also compare to a host of known
anomalies: market capitalization (Fama and French [1992], [1993]), book-to-market
ratio (Fama and French [1992], [1993]), pre-announcement return (Carhart [1997]),
earnings persistence (Francis et al. [2004]), earnings volatility (Cao and
Narayanamoorthy [2012]), gross profitability (Novy-Marx [2013]), operating
profitability (Ball et al. [2016]), total accruals (Richardson et al. [2005]), operating
accruals (Sloan [1996], Hribar and Collins [2002]), and asset growth (Cooper et al.
[2008]).

Specifically, we estimate Fama and MacBeth [1973] regressions in which the
dependent variable is the firm’s post-announcement 63-day Fama-French five-factor
and momentum-adjusted buy-and-hold return (FF6). Using FF6 ensures that the return-
predicting ability of the CNN buy probability (or the CNN buy+ probability) is not
driven by the market, size, value, profitability, investment, or momentum factors.”! In
each quarter, we run the following cross-sectional regressions for the CNN buy

probability

2ITo conserve space, we only report the results for FF6. The results are similar when using the other
post-announcement buy-and-hold abnormal returns.
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FF6, 5,1 = ag + B4 CNNbuyprobabilityl.,q + YBcqControls; g + € g11,  (3)

and the following cross-sectional regression for each of the three CNN+ buy probability

FF6; 411 = ag + By CNN+ buyprobabilityl., .t 2.BcqControls; ; + & g41, (4)

where i@ refers to the stock, q refers to the quarter, and FF6;,,, is the post-
announcement Fama-French five-factor and momentum-adjusted buy-and-hold return
over the windows [+2, +64] in trading days relative to firm i’s earnings announcement
date in quarter q. The CNN buy probability, CNN+ buy probability, and control
variables are converted into scaled ranks ranging from —0.5 to 0.5 with a mean of zero.
Then, we average the cross-sectional coefficients across all quarters, and multiply them
by 100 (so the coefficients are reported in percent).

Table 4 reports the results. First, the coefficient on the CNN buy probability in
column 1 is 0.341 (#-statistic = 0.544), suggesting that the CNN buy probability does
not yield incremental drift-predicting power beyond the 13 firm characteristics.
However, the coefficient on the CNN+ buy probability in column 2 is 1.658 and
statistically significant at the 1% level (#-statistic = 3.509), suggesting that a long-short
strategy of going long on the highest CNN buy probability decile and short on the lowest
decile generates an incremental 63-day FF6 of around 1.658%, controlling for other
anomalies. We find similar results in columns 3 and 4: the coefficients on the CNN+
buy probability based on the other two CNN+ models are positive and statistically
significant at the 5% level.

The findings in Table 4 indicate that CNN is picking up features that relate to the
existing anomalies in predicting post-announcement returns, while a significant fraction
of the CNN+ buy probability’s drift-predicting power remains largely orthogonal to that
of the existing anomalies.
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5.3 Explaining the Drift Predictability of CNNBP/CNNBP+

Having demonstrated the superior return-predicting power of the CNN+ buy
probability relative to that of the CNN buy probability using both portfolio analysis and
cross-sectional regressions, in this section we seek to better understand the underlying
sources of their return predictability via a decomposition exercise.

We adopt the econometric approach in Hou and Loh [2016] to evaluate a number
of candidate variables that may potentially explain the return-predicting ability of the
CNN buy probability and that of the CNN+ buy probability. Specifically, their
methodology allows us to quantify the extent to which each candidate explanation
accounts for the return predictability of the CNN buy probability, either in isolation or
after controlling forother competing explanations. To conserve space, we describe the
methodology using the CNN buy probability in the following discussions; the same
process applies to the CNN+ buy probability.

First, we estimate Fama and MacBeth [1973] cross-sectional regressions to
examine the relation between the CNN buy probability and post-earnings announcement
returns. For each quarter ¢ between 2010Q3 to 2023Q2, we run the following cross-

sectional regression:

FF6; 541 = ag + BgCNNBP, ; + €; 441, (5)

where i refers to the stock, g refers to the quarter, and FF6;,,, is the post-
announcement Fama-French five-factor and momentum-adjusted buy-and-hold return
over the windows [+2, +64] in trading days relative to firm i’s earnings announcement
date in quarter q. Using FF6 ensures that the return-predicting ability of the CNN buy

probability is not driven by the market, size, value, profitability, investment, or
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momentum factors.”> The CNN buy probability is converted into scaled ranks ranging
from —0.5 to 0.5 with a mean of zero. The average coefficient (multiplied by 100 and
reported in percent) on the CNN buy probability across all quarters equals 1.281% with
a t-statistic of 2.617, suggesting a positive relation between the CNN buy probability
and post-announcement returns.

Next, for each quarter q, we regress the CNN buy probability on a candidate
explanatory variable:

CNNBP,; ; = a4 + §,Candidate; ; + 1; 4, (6)

where both The CNN buy probability and the candidate variables are converted into
scaled ranks ranging from —0.5 to 0.5 with a mean of zero. After obtaining the
regression coefficient estimates, we decompose CNNBP;, into two orthogonal
components: the candidate component (= §,Candidate;, ) is the component of
CNNBP;; related to the candidate variable, and the residual component (= a; + ;)
is the component of CNNBP; , unrelated to the candidate variable.

Lastly, we use the linearity of covariances to decompose the S, from equation (5)
into two components, ,BC(I: and ,85 , where the former is the component of S, related
to the candidate variable and the latter is the component of S, unrelated to the

candidate variable. Specifically,

22The results are similar when using the other post-announcement buy-and-hold abnormal returns.

29



_ Cov[FF6; 4.1, CNNBP, ]

7 Vvar(CNNBP,,)
B Cov[FF6i,q+1, (SqCandidatei,q +a, + ,ui,q)]
B Var(CNNBP, )
Cov[FF6i,q+1,5qCandidatei,q] Cov[FF6i,q+1, (aq + ui,q)]
- Var(CNNBP; ;) Var(CNNBP; )
= Bg + Bq- (7)

Therefore, ,BC(I: /B4 measures the fraction of the CNNBP’s drift predictability explained
by the candidate variable, and [S’g /Bq measures the “residual” fraction of the
CNNBP’s drift predictability left unexplained by the candidate variable. By
construction, these two fractions sum to one. While the means and variances of the two
fractions do not have closed forms, Hou and Loh [2016] derive their approximations
using the multivariate delta method based on Taylor series expansions. As a result, we
can test the statistical significance of both fractions.

For a candidate variable to have positive contribution towards explaining the
C

CNNBP’s drift predictability (i.e., % > 0), the correlation between the CNNBP and
q

the candidate variable (sign captured by §,) and the correlation between FF6 and the
candidate variable (i.e., Cov[FF6i'q+1, Candidatei,q]) should have the same sign. In
contrast, if one of the correlations is close to zero or if the two correlations have
opposite signs, then the candidate variable may contribute little or negatively to

explaining the CNNBP’s drift predictability.

5.3.1 Evaluating candidate explanations one at a time

Panel A of Table 5 presents the results for this decomposition exercise using each of the
13 variables as the candidate variable to explain the CNNBP’s drift predictability. We
start off by using standardized unexpected earnings (SUE) as an example to illustrate
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the decomposition analysis (column 1 in Panel A, Table 4). Step 1 is the baseline
regression of regressing FF6 on CNNBP, and the average coefficient on CNNBP is
1.281% (t-statistic = 2.617). Note that the average coefficients on CNNBP in Step 1 are
the same across all candidate variables, since we require the 13 firm variables to be
non-missing in the out-of-sample dataset.

In Step 2, we regress CNNBP on SUE each quarter. The average coefficient on
SUE is 44.200 with a t-statistic of 31.333, suggesting that CNNBP is significantly
related to SUE (moving from the lowest decile to the highest decile of CNNBP on
average leads to a 44.2% increase in the decile of CNN buy probability). The adjusted
R-squared further shows that 19.9% of the variation in CNNBP can be explained by
SUE. In addition, Step 2 allows us to decompose CNNBP each quarter into two
orthogonal components: the candidate component (6,SUE; ;) is the component of
CNNBP related to SUE and the residual component (a, + p; 4) is the component of
CNNBP unrelated to SUE.

In Step 3, we use the above two components to decompose the coefficient on
CNNBP (B,) in Step 1 into a component that is related to SUE (,Bg) and a residual
component (,6'5), as shown in equation (7). The time-series averages of ﬁg and ,6'(’;

are 0.818% and 0.463%, respectively, and they sum to f, (= 1.281%) by

C

construction. Since % = 63.8% and is statistically significant at the 1% level (t-
q

statistic = 2.815), we conclude that SUE alone explains 63.8% CNNBP’s drift

predictability (i.e., the relation between CNNBP, and FF6,,1). On the other hand, the
R

fraction left unexplained is 36.2% (= l;—q), which is statistically indistinguishable from
q

Zero.
Turning to the other candidate variables, we find that in Step 2 CNNBP is

positively related to earnings acceleration (EA), trend in gross profitability (TREND),
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past returns (PASTRET), earnings persistence (PERSIST), earnings volatility (VOL),
book-to-market ratio (BM), while negatively related to market capitalization (SIZE),
gross profitability (GP), operating profitability (OP), operating accruals (OA), total
accruals (TA), and asset growth (AG). Step 3 suggests that SUE and TREND explains
37.1% and 9.5% of the CNNBP’s drift predictability, respectively, while the other
candidate variables’ contributions are not statistically significant at the 10% level.

Panels B to D presents the analogous decomposition exercise for the CNN+ buy
probability generated by the CFO, IBCa, and OE versions of the CNN+ model,
respectively. First, Step 1 in Panels B to D shows that the average coefficients on
CNNBP+ across all quarters are 2.088% (t-statistic = 3.670), 1.716% (t-statistic =
3.311), and 1.760% (t-statistic = 3.905), respectively, suggesting a positive relation
between each of the three CNN+ buy probability and the post-announcement returns.

Next, while the three CNN+ models are based on different earnings quality
measures, Step 2 in Panels B to D suggests that the three CNN+ buy probabilities
exhibit certain similarities—they are all positively related to SUE, EA, TREND,
PASTRET, PERSIST, VOL, and GP, and negatively related to OA, TA, and AG. In
contrast, a striking difference emerges when compared to Step 2 in Panel A: gross
profitability (GP) is negatively associated with CNNBP, but positively associated with
CNNBP+.

Finally, Step 3 shows that the drift predictability of CNNBP+ can be significantly
explained by SUE (31.4%), EA (14.1%), TREND (5.9%), and GP (15.7%); by SUE
(36.5%), EA (20.2%), and SIZE (11.3%); and by SUE (37.3%), EA (19.3%), TREND

(7.6%), SIZE (12.7%), BM (9.3%), and GP (7.2%) in Panels A, B, and C, respectively.
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5.3.2 Evaluating all candidate explanations simultaneously

Next, we proceed to examine the total fraction of the CNNBP’s (or CNNBP+’s)
drift predictability that the 13 candidate variables can collectively explain and assess
the marginal contribution of each candidate variable after controlling for the other
candidate variables. Table 6 reports the results of this multivariate analysis.

Step 1 is the same as in Table 5. In Step 2, we find the 13 variables explain 32.5%,
21.5%, 26.4%, and 27.2% of the variation in CNNBP, CFO, IBCx, and OE versions of
CNNBP+, respectively. The relation between CNNBP (or CNNBP+) and each of the
13 variables is similar as before. For example, we continue to find that both CNNBP
and CNNBP+ are positively related to SUE, while negatively related to OA. Notably,
CNNBP is insignificantly related to GP, while the three versions of CNNBP+ are
positively related to GP.

Step 3 shows that the 13 variables collectively explain 85.4% (= 100% -14.6%) of
CNNBP’s drift predictability. Consistent with the findings in Panel A of T able 5, SUE
and EA stand out, explaining 59.1% (t-statistic = 2.817) and 14.3% (t-statistic = 1.952)
of the return predictability, respectively. The fraction left unexplained is 14.6% and is
statistically indistinguishable from zero (t-statistic = 0.407). The results explain why
the coefficient of regressing post-announcement returns (FF6) on the CNN buy
probability is insignificant in column 1 of Table 3: the CNN buy probability’s drift-
predicting ability largely resembles that of SUE and EA, and thus disappears after
controlling for SUE and EA in the regression.

On the other hand, while SUE continues to play an important role in explaining
each of the three CNN+ buy probability’s drift-predicting ability (ranging from 28.6%
to 35.1%), gross profitability (GP) also has a decent contribution (ranging from 7.7%

to 12.5%). Overall, we see the fraction of the CNNBP+’s drift predictability left
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unexplained is 60.6% (t-statistic = 4.820), 44.9% (t-statistic = 2.983), and 41.8% (t-
statistic = 2.399) when CNNBP+ is generated by CFO, IBCa, and OE versions of the
CNN+ models, respectively. The results explain why the coefficient of regressing post-
announcement buy-and-hold abnormal returns on the CNN+ buy probability all
shrinks?® after controlling for the 13 variables, but remains significantly positive: SUE
and GP can partially, but not fully, explain the CNN+ buy probability’s return-predicting
power.

Overall, the decomposition analyses in Tables 5 and 6 offer insights into the drift-
predictive power of both the CNN and CNN+ buy probabilities. Specifically, the
findings indicate that CNN is able to extract relevant information from earnings images
that is predictive of future returns. However, its limitation lies in its inability to identify
features beyond the earnings data itself, as most of the drift predictability associated
with the CNN buy probability is already captured by standardized unexpected earnings
(SUE) and earnings acceleration (EA), both of which are transformations of the
underlying earnings figures.

In contrast, the drift-predictive features captured by the three CNN+ models
extend beyond SUE to also encompass gross profitability (GP), an anomaly that is not
based on earnings. This finding is particularly noteworthy given that GP is not directly
employed as the earnings quality measure in constructing the variation earnings bar
charts; instead, we rely on cash flow from continuing operations (CFO) and two
operating earnings variables—IBCa and OE. Furthermore, the 13 firm characteristics
collectively explain around 40% to 60% of the drift-predictive power of the CNN+ buy

probability, leaving a substantial fraction unexplained. In other words, after we utilize

BWhen going from the univariate regression (the first two columns in Table 4) to the multivariate
regression in Table 3, the coefficient on the CNN+ buy probability shrinks from 2.088% to 1.658%, from
1.716% to 1.110%, and from 1.760% to 1.059% when employing CFO, IBC,, and OE as the earnings
quality measure to create shaded earnings images for the CNN+ models, respectively.
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the concept of earnings quality to create variation earnings bar-chart images, the three
CNN+ models capture drift-predictive features that are incremental to the existing
anomalies in predicting post-announcement returns. The capacity of the CNN+ models
to uncover novel sources of return predictability may potentially explain their superior

performance relative to the baseline CNN.

6 Conclusion

Our research explores the potential of applying Al to visualized earnings data in
financial analysis. First, we transform time series quarterly earnings into earnings bar-
chart images, and train CNNs on these images to extract features predictive of post-
earnings announcement drift. We find that its out-of-sample drift predictability
outperforms that of alternative trend-detectable models.

Next, we employ accounting domain expertise to enrich the earnings bar charts
with earnings quality information. Specifically, we borrow three established earnings
quality measures from the literature, adjust the shading of earnings bars to reflect
earnings quality, and train CNNs on these images accordingly. We find the out-of-
sample drift-predicting performance based on the shaded earnings images is superior to
that based on the unshaded earnings images, and remains significant after controlling
for previously documented anomalies and earnings attributes.

Using a decomposition framework, we show that the drift predictability based on
CNN alone can be largely attributed to earnings-based drift predictors such as
standardized unexpected earnings and earnings acceleration. In contrast, incorporating
human expertise into the CNN model extends its drift-predictive power beyond
standardized unexpected earnings to also capture gross profitability. Importantly, a

significant portion of the drift predictability based on the combined wisdom of humans
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and CNN remains unexplained by existing return anomalies.

Overall, our paper highlights the usefulness of applying Al along with human
domain expertise to visualized data in accounting research. Although Al increasingly
challenges the role of human expertise in accounting, our findings provide a modest
example in which Al achieves superior performance when supported by human

insights—reinforcing the unique value accountants bring to the table.
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Appendix A. Plotting Earnings Images.

First, let E;,E,,..,Eg denote the most recent eight quarterly earnings
corresponding to quarter q — 7,9 — 6, ...,q, Emax and Eypy denote the maximum
and minimum of the eight quarterly earnings, and () denote the function that rounds
the input value to the nearest whole number. We set the bottom-left vertex of the image
as the origin of a two-dimensional coordinate system, so a rectangular area in the image
can be represented as ([xq, X2, [V1, ¥2]). Next, we classify firms” most recent eight
quarterly earnings into one of the three types, determine the values corresponding to
the top and bottom of the image, and plot each quarterly earnings into bars accordingly.

The three types are as follows:

® Type I (Eyny = 0; the most recent eight quarterly earnings are all non-
negative): In this case, we set Eyax and 0 as the top and bottom of the image,

respectively. E; is plotted as the area of

E.
([31’ —2.3i—1], [O,r (24 * — )]) (1D

MAX
for i =1, ..., 8 Image 1 in Figure 2 displays an example earnings image of

this type. The maximum earnings is E- and thus it occupies a whole column.
All other quarterly earnings are plotted upward, and their heights are
determined using E, as the reference point.

® Typell (Eyax >0and Eyyny <0; the maximum quarterly earnings is positive
while the minimum earnings is negative): In this case, Eyax and Eyn

coincide with the top and bottom of the image, respectively. The implicit “zero-

—EMIN

earnings line” corresponds to r (24 * ), and E; is plotted above or

Epmax—Emin

below the zero-earnings line as follows:
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_E E
[31—231—1,r(24* MIN )r<24*$)+r<24*—1)] if E; >0,

EMAX EMIN EMAX - EMIN EMAX - EMIN

—E, -E _
[3i —2,3i — 1], r(24*EMAX ’gMIN) r(24*m>,r(24*m%)] if E;<0,
(2)

for i =1, ..., 8 Image 2 in Figure 2 displays an example earnings image of

this type. Here we see the advantage of using bar charts as opposed to line

graphs when plotting earnings. Bars can represent positive, zero, or negative

earnings without further specifying numbers on the vertical axis. Positive

earnings are plotted upward while negative earnings are plotted downward,

and the bar lengths (in pixels) are computed as the rounded value of 24
multiplied by the absolute values of E; scaled by Eyax — Emin-

® Type Il (Emax < 0; the most recent eight quarterly earnings are all non-

positive): In this case, 0 and Eyyy coincide with the top and bottom of the

image, respectively. E; is plotted as the area of

[3i — 2,3i — 1], [24 -7 (24 * ) 24] 3

MIN

for i =1, ..., 8 Image 3 in Figure 2 displays an example earnings image of
this type. The minimum earnings is E5 and thus it occupies a whole column.
All earnings are plotted downward, and their heights are plotted using E5 as

the reference point.

Note that in all three types, it is possible for E; to be very close to zero after
scaling and thus does not occupy a full pixel in the image after rounding, i.e., y; =

y,.2* In addition, the distance between two neighboring earning of pixel between is

240ne extreme case is that all eight quarterly earnings are very close to each other so that when
plotting earnings on a bar chart, each earnings bar occupies a whole column. In this case, one cannot tell
from the image whether all earnings are positive or negative. However, we checked all earnings images
and did not find this extreme case.
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greater than the distance between the leftmost (or rightmost) earnings and the border of
the image, which is consistent with the default setup of a bar chart for most statistical

software.

Appendix B. Variable Definitions. This table summarizes variable definitions.

Variables Descriptions
MAR Market-adjusted return (MAR) is defined as the difference between the
buy-and-hold return of an announcing firm and that of the CRSP value-
weighted market portfolio over the 63-day windows [+2, +64] following
its earnings announcement date.

SAR Size-adjusted return (SAR) is defined as the difference between the buy-
and-hold return of an announcing firm and that of a size-matched portfolio
over the 63-day window ([+2, +64]) following its earnings announcement
date. We use the monthly NYSE size decile breakpoints at the end of June
in year t to determine the size-matched portfolio for a firm whose

earnings announcement date is between July of year t to June of year t +
1.

FF4 Fama-French three-factor and momentum-adjusted buy-and-hold return
during the 63-day window ([+2, +64]) following earnings announcement
date, with factor loadings estimated using the 120-day window ([-150, -
31], 90 days minimum) prior to the earnings announcement date. The
factors are market, size, value, and momentum.

FF6 Fama-French five-factor and momentum-adjusted buy-and-hold return
during the 63-day window ([+2, +64]) following earnings announcement
date, with factor loadings estimated using the 120-day window ([-150, -
31], 90 days minimum) prior to the earnings announcement date. The
factors are market, size, value, operating profitability, investment, and
momentum.

HMXZ5 q’-factor-adjusted buy-and-hold return during the 63-day window ([+2,
+64]) following earnings announcement date, with factor loadings
estimated using the 120-day window ([-150, -31], 90 days minimum) prior
to the earnings announcement date. The factors are market, size,
investment, return on equity, and expected growth.

DHS3 Behavioral-factor-adjusted buy-and-hold return during the 63-day window
([+2, +64]) following earnings announcement date, with factor loadings
estimated using the 120-day window ([-150, -31], 90 days minimum) prior
to the earnings announcement date. The factors are market, financing, and
post earnings announcement drift.
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CFO

IBCa

OE

SUE

EA

TREND

Quarterly cash flow from continuing operations, defined as the quarterly
change in year-to-date net cash flow from operating activities (OANCFY)
less the quarterly change in year-to-date cash flow from extraordinary
items and discontinued operations (XIDOCY). The latter is set to zero if
missing. CFO is scaled by total assets (ATQ) in the previous quarter.

Quarterly adjusted income before extraordinary items, defined as the sum
of the quarterly change in year-to-date income before extraordinary items
reported in the cash flow statement (IBCY); the quarterly change in year-
to-date depreciation and amortization (DPCY); the quarterly change in
year-to-date cash flow from extraordinary items and discontinued
operations (XIDOCY); the quarterly change in year-to-date sale of
property, plant and investments gain (SPPIVY); the quarterly change in
year-to-date net loss earnings (ESUBCY); and the quarterly change in year-
to-date other items involved in the calculation of funds from operations
(FOPOY). All missing items are set to zero except for the quarterly change
in year-to-date income before extraordinary items reported in the cash flow
statement. IBCj, is scaled by total assets (ATQ) in the previous quarter.

Quarterly operating earnings, defined as the quarterly change in year-to-
date net cash flow from operating activities (OANCFY) minus the sum of
the quarterly change in year-to-date accounts receivable decrease
(RECCHY); the quarterly change in year-to-date inventory decrease
(INVCHY); the quarterly change year-to-date accounts payable and
accrued liabilities increase (APALCHY); the quarterly change in year-to-
date income taxed accrued increase (TXACHY); and the quarterly change
in year-to-date net change in other assets and liabilities (AOLOCHY). All
missing items are set to zero except for the quarterly change in year-to-date
net cash flow from operating activities. OE is scaled by total assets (ATQ)
in the previous quarter.

Standardized unexpected earnings, defined as quarter q’s EPS minus
quarter g-4’s EPS, scaled by the standard deviation of EPS in the most
recent eight quarters (six quarters minimum). EPS is computed as income
before extraordinary items (IBQ), divided by shares outstanding
(CSHOQ). Shares are adjusted for stock splits.

Earnings acceleration. For firm i in quarter q, we use

EPS;; —EPS; 4 EPS;,_4 —EPS;4_s
Stock Price; 44 Stock Price; 4_;

)

where EPS;, is earnings per share for firm i in quarter g. Shares

are adjusted for stock splits.

Trend in quarterly gross profitability. For firm i in quarter g, weuse B;,
estimated from the following time-series regression:
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PASTRET

PERSIST

VOL

SIZE

BM

GP

op

GPQi,q = ai_q + Bi'qt + /‘ll,i,qDl + /‘lz,i,qDZ + /‘lg'i'qDS + Ei,q B

where t = 1,2, ...,8 and represents a deterministic time trend covering
quarter ¢ — 7 through g, and D1 to D3 represent quarterly dummy
variables. GPQ is calculated as sales revenue (SALEQ) minus costs of
goods sold (COGSQ), divided by total assets (ATQ). If SALEQ is
unavailable, we use quarterly revenue (REVTQ). If COGSQ is unavailable,
we use quarterly total operating expenses (XOPRQ) minus quarterly
selling, general and administrative expenses (XSGAQ, zero if missing).

Past return, defined as the value-weighted market-adjusted stock return
during the [-30, —2] window prior to earnings announcement date.

Earnings persistence. For firm i in quarter g, we use f;, estimated

from the following time-series regression:
EARNINGSL’q = a'l-,q + ﬁi,qEARNINGSi’q_l + Ei,q ,

with the most recent eight quarters (quarter ¢ —7 to q) of earnings

(IBQ).

Earnings volatility. We use the standard deviation of ROA in the most
recent eight quarters (quarter ¢ — 7 to q). ROA is defined as quarterly
earnings (IBQ) divided by total assets (ATQ) in the previous quarter.

Firm size for July of year t to June of year t + 1 is defined as June
market capitalization (from CRSP) of year t.

Book-to-market ratio for July of year t to June of year ¢t + 1 is defined as
book equity for the fiscal year ending in calendar year ¢t — 1 divided by
the market capitalization at the end of December of t — 1. Book equity is
computed as stockholders’ book equity (SEQ), plus deferred taxes (TXDB,
zero if missing) and investment tax credit (ITCB, zero if missing), minus
the book value of preferred stock (depending on availability, we use
redemption (PSTKRF), carrying (PSTKL), or par value (PSTK)).

Gross profitability for July of year t to June of year t 4+ 1 is defined as
sales revenue (SALE) minus cost of goods sold (COGS), divided by total
assets (AT) for the fiscal year ending in calendar year t — 1. If SALE is
unavailable, we use revenue (REVT). If COGS is unavailable, we use total
operating expenses (XOPR) minus selling, general and administrative
expenses (XSGA, zero if missing).

Operating profitability for July of year t to June of year t + 1 is defined
as sales revenue (SALE) minus cost of goods sold (COGS), minus selling,
general, and administrative expenses (XSGA), and plus research and
development expenditures (XRD, zero if missing), scaled by total assets
(AT) for the fiscal year ending in calendar year ¢t — 2. If SALE is
unavailable, we use revenue (REVT). If COGS is unavailable, we use total
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TA

OA

AG

operating expenses (XOPR) minus selling, general and administrative
expenses (XSGA, zero if missing).

Total accruals for July of year t to June of year t + 1 is defined as net
income (NI) minus operating, investing, and financing net cash flows
(OANCEF, IVNCEF, and FINCF) plus sales of stocks (SSTK, zero if missing)
minus stock repurchases and dividends (items PRSTKC and DV, zero if
missing) for the fiscal year ending in calendar year t — 1, scaled by total
assets (AT) for the fiscal year ending in t — 2.

Operating accruals for July of year t to June of year ¢t + 1 is defined as
net income (NI) minus net cash flow from operations (OANCF) for the
fiscal year ending in calendar year t — 1, scaled by total assets (AT) for
the fiscal year ending in t — 2.

Asset growth for July of year t to June of year t + 1 is defined as total
assets (AT) for the fiscal year ending in calendar year t — 1 minus total
assets for the fiscal year ending in t — 2, scaled by total assets for the fiscal
year ending in ¢t — 2.
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Diluted Earnings Per Share 00 Meta

$6.03

Q322 Q4'22 Q123 Q2'23 Q3'23 Q4'23 Q124 Q224 Q324

Panel A. Actual earnings chart from Meta’s Q3 2024 Earnings Presentation

Panel B. Transformed image of Meta’s earnings

Figure 1. Examples of visualized earnings information. This figure displays the actual visualized
earnings provided in Meta’s Q3 2024 Earnings presentation and the transformed image that is given to
the CNN to predict the buy probability.
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Image 1 Image 2 Image 3

Ey E, E; E, Es E¢ E; Eg

Image 1 0.163 0.669 1.457 1.788 1.727 1.913 2.752 2.825
Image 2 0.643 1.067 1.637 1.181 -0.911 1.377 1.047 0.493
Image3  -2.887 -3.934 -3.812 -4.613  -16378  -7.156 -7.919 -5.768

Figure 2. Plotting Earnings Images. This figure displays three example earnings images.
Ei,E,, ..., and Eg represent quarterly earnings in quarter g—7, q—o, ..., and g, respectively. Image
1 is a type I earnings image whose quarterly earnings in the most recent eight quarters are all non-
negative. Image 2 is a type I earnings image whose maximum quarterly earnings in the most recent
eight quarters is positive, and the minimum quarterly earnings in the most recent eight quarters is
negative. Image 3 is a type IIl earnings image whose quarterly earnings in the most recent eight
quarters are all non-positive.
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Panel A. Pixel value by earnings quality decile

Earnings quality decile

1 2 3 4 5 5.5 6 7 8 9 10

Pixel value 26 51 77 102 128 140 153 179 204 230 255

Panel B. Earnings images with earnings quality shading

Image 1 Image 2 Image 3

E, E, E, E, E. E, E, Eq

Imagel 0.163  0.669 1457 1788 1727 1913 2752  2.825
Image2 0.643 1067 1637  1.181  -0911 1377  1.047  0.493
Image3 -2.887 -3.934  -3812  -4613 -16378 -7.156  -7.919  -5.768

EQ, EQ, EQ;3 EQ4 EQs EQs¢ EQ; EQsg
Image 1 5.5 5 4 6 9 3 10 8
Image 2 5 9 4 5 9 9 3 5
Image 3 5.5 2 1 1 2 2 1 5

Figure 3. Plotting Earnings Images after incorporating Earnings Quality. Panel A presents for
each earnings quality decile the pixel values used to color the earnings bars. Panel B displays three
example earnings images incorporated with earnings quality. E;,E,, .., and Eg represent the
quarterly earnings in quarter g—7, q—6, ..., and g, respectively. EQq,EQ,, .., and EQg represent
the earnings quality decile for E;, E,, ..., and Ejg, respectively.
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Panel A: CNN
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Panel B: CNN+ (CFO version)
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Panel C: CNN+ (IBCa version)
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Panel D: CNN+ (OE version)
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Figure 4. Drift-Predicting Performance Over Time: CNN vs. CNN+. This figure depicts the hedge
portfolio return based on CNN and CFO, IBCa, and OE versions of CNN+ in Panels A to D, respectively,
during the out-of-sample period (2010Q3-2023Q2). The hedge portfolio returns based on CNN (CNN+) are
computed as the post-announcement 63-day Fama-French five-factor and momentum-adjusted buy-and-hold
returns between the highest and lowest CNNBP (CNNBP+) deciles. See Appendix B for variable definitions.
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Table 1.

Sample Selection

All Compustat firm-quarters with matched CRSP Permno (SHRCD = 10 or 11; EXCHCD = 1, 2 or 3) whose earnings announcement

date (Compustat item RDQ) is between 1974Q1 and 2023Q2 814,230
Drop observations with missing RDQ in the most recent eight quarters (86,536)
Drop observations with earnings announcements on the same date for the same firm in the most recent eight quarters (3,347)
Drop observations with RDQ less than 30 days away from the previous quarter RDQ in the most recent eight quarters (16,942)
Drop observations with RDQ before or more than 180 days after the quarter fiscal period end date in the most recent eight quarters (2,966)
Drop observations with missing earnings (Compustat item IBQ) in the most recent eight quarters (74,377)
Drop observations whose CRSP daily price at the current quarter RDQ is missing or <$1 (102,201)
Drop financial firms (SIC codes between 6000 and 6999) and utility firms (SIC codes between 4900 and 4949) (109,372)
Drop observations with non-positive book-to-market ratio (BM) or missing market capitalization (SIZE) (14,585)
Drop observations with more than 30 missing CRSP daily returns in the 120-day window ([-150, -31]) prior to the current quarter RDQ (24)
Total observations 403,880
Table 2
In-sample dataset: observations between 1974Q1 and 1993Q4 124,341
Out-of-sample dataset: observations between 1994Q3 and 2023Q2 with non-missing SUE, EA, TREND, PASTRET, PERSIST, VOL,
GP, OP, OA, TA, and AG 239,012
Tables 3 to 6

) . 191,118
In-sample dataset: observations between 1990Q4 and 2009Q4
Out-of-sample dataset: observations between 2010Q3 and 2023Q2 with non-missing SUE, EA, TREND, PASTRET, PERSIST, VOL,
GP, OP, OA, TA, and AG and whose 10-K/10-Q filing is released no later than one day after RDQ 43.734

This table reports the sample selection procedures. The in-sample dataset is for model training. The out-of-sample dataset is for testing the out-of-

sample model performance. See Appendix B for variable definitions.
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Table 2.

Drift-Predicting Performance: CNN vs. LSTM and TFT

MAR SAR FF4 FF6 HMXZ5 DHS3
Panel A: CNN

0.035%** 0.035%** 0.031%**  (.032%** 0.034%*** 0.034%**

(6.990) (6.812) (8.331) (8.961) (8.086) (7.809)
Panel B: LSTM

0.030%** 0.029%** 0.026***  (0.026%** 0.027%*** 0.025%**

(5.684) (5.349) (6.931) (7.631) (6.351) (6.001)
Panel C: TFT

0.024*** 0.022%** 0.020%**  (0.019%** 0.020%** 0.018%**

(4.802) (4.495) (5.853) (5.934) (5.513) (5.024)
Panel D: CNN vs. LSTM

0.006* 0.006** 0.006** 0.006%** 0.006%*** 0.008***

(1.831) (1.998) (2.522) (2.735) (2.721) (3.373)
Panel E: CNN vs. TFT

0.011** 0.013** 0.011** 0.013%** 0.014%*** 0.015%**

(2.058) (2.512) (2.498) (2.968) (3.577) (3.574)

Panels A to C report the average hedge portfolio returns during the out-of-sample period (1994Q3 to
2023Q2) for CNN, LSTM, and TFT, respectively. The hedge portfolio returns based on CNN are
computed as the differences in 63-day buy-and-hold abnormal returns (BHAR) following earnings
announcements—including market-adjusted return (MAR), size-adjusted return (SAR), and factor-
adjusted returns (FF4, FF6, HMXZ5, and DHS3)—between the highest and lowest CNNBP deciles.
CNNBP is the CNN buy probability generated by CNN. The CNNBP decile cutoffs are based on the
distribution of the previous quarter’s CNNBP. The average hedge portfolio returns for LSTM and TFT
are computed analogously. Panels E and F report the average differences in hedge portfolio returns
between CNN and LSTM, and between CNN and TFT, respectively. See Appendix B for variable
definitions. Newey and West [1987] t-statistics with three lags are reported in parentheses, and ***,
** and * indicate significance at the 1%, 5%, and 10% levels, respectively.
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Table 3.

Drift-Predicting Performance: CNN vs. CNN+

MAR SAR FF4 FF6 HMXZ5 DHS3
Panel A: CNN
0.021%** 0.021%** 0.022%** 0.021%** 0.023%** 0.025%**
(2.869) (2.858) (4.532) (4.333) (4.263) (3.444)
Panel B: CNN+ (using CFO as the earnings quality measure)
0.039%x** 0.039%x** 0.042%** 0.04 1 %** 0.042%** 0.044%**
(7.232) (7.296) (9.116) (9.153) (7.745) (6.779)
Panel C: CNN+ (using IBCax as the earnings quality measure)
0.031%** 0.029%x** 0.030%** 0.031%** 0.034%** 0.036%**
(4.588) (4.394) (5.773) (5.915) (6.556) (5.331)
Panel D: CNN+ (using OE as the earnings quality measure)
0.031%** 0.030%** 0.030%** 0.030%** 0.032%** 0.036%**
(5.276) (5.468) (5.908) (5.636) (5.929) (4.915)
Panel E: CNN+ (using CFO as the earnings quality measure) vs. CNN
0.018%** 0.019%x** 0.020%** 0.020%** 0.018%** 0.019%**
(2.696) (3.098) (3.805) (3.564) (3.120) (0.409)
Panel F: CNN+ (using IBCa as the earnings quality measure ) vs. CNN
0.009* 0.008* 0.008** 0.010%** 0.011%* 0.011%*
(1.871) (1.727) (2.649) (3.148) (2.524) (2.571)
Panel G: CNN+ (using OE as the earnings quality measure) vs. CNN
0.010%* 0.009%* 0.008** 0.009%* 0.008* 0.011%*
(2.060) (2.047) (2.544) (2.592) (1.875) (2.639)

Panels A to D report the average hedge portfolio returns in the out-of-sample period (2010Q3-2023Q2)
for CNN and the CFO, IBCa, and OE versions of CNN+, respectively. Earnings images are unshaded
for CNN, while for each CNN+ model, earnings images are shaded according to one of three earnings
quality measures (all scaled by lagged assets): CFO (cash flow from continuing operations), IBCa
(adjusted income before extraordinary items), and OE (Dechow-Dichev operating earnings). The
hedge portfolio returns based on CNN (CNN+) are computed as the return differences in 63-day buy-
and-hold abnormal returns (BHAR) after earnings announcements—including market-adjusted returns
(MAR), size-adjusted returns (SAR), and factor-adjusted returns (FF4, FF6, HMXZS5, and DHS3)—
between the highest and lowest CNNBP (CNNBP+) deciles. CNNBP (CNNBP+) is the CNN buy
probability (CNN+ buy probability) generated by CNN (CNN+). The CNNBP (CNNBP+) decile
cutoffs are based on the distribution of the previous quarter’s CNNBP (CNNBP+). Panels E to G report
the average differences in hedge portfolio returns between CNN and each of the three CNN+,
respectively. See Appendix B for variable definitions. Newey and West [1987] t-statistics with three
lags are reported in parentheses, and ***, ** and * indicate significance at the 1%, 5%, and 10% levels,
respectively.
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Table 4.

CNNBP/CNNBP+ and Post-Announcement Returns: Regression Analysis

() (2) 3) (4)
Intercept 0.396 0.366 0.363 0.369
(0.878) (0.825) (0.822) (0.833)
CNNBP 0.341
(0.544)
CNNBP+ 1.658%** 1.110%* 1.059%*
(3.509) (2.322) (2.438)
SUE 0.918* 0.543 0.691 0.707
(1.881) (1.122) (1.508) (1.494)
EA 1.207%* 1.184%% 1.148%* 1.172%*
(2.588) (2.503) (2.433) (2.521)
TREND 0.560 0.398 0.481 0.457
(0.995) (0.724) (0.865) (0.812)
PASTRET 0.077 0.022 0.050 0.057
(0.161) (0.045) (0.104) (0.119)
PERSIST 0.086 0.022 0.020 0.015
(0.188) (0.049) (0.045) (0.034)
VOL ~0.362 ~0.543 ~0.620 —0.572
(-0.519) (~0.835) (-0.918) (~0.839)
SIZE —1.853% ~1.906* —1.872% —1.884%*
(-1.753) (~1.768) (-1.739) (-1.736)
BM 1.022 0.865 0.889 0.904
(0.926) (0.807) (0.838) (0.838)
GP 2.374% 2.237 2.359% 2.325%
(1.702) (1.618) (1.709) (1.678)
OP 0.873 0.600 0.770 0.808
(0.865) (0.609) (0.785) (0.820)
OA 0.550 0.713 0.620 0.628
(0.696) (0.896) (0.790) (0.797)
TA ~0.931 ~0.961 ~0.935 ~0.949
(-1.287) (-1.339) (—1.298) (-1.322)
AG —0.417 ~0.304 ~0.359 ~0.359
(~0.786) (~0.552) (—0.662) (~0.659)
Adj. R? 0.023 0.023 0.023 0.023
obs. 43,734 43,734 43,734 43,734

The table presents results of Fama and MacBeth [1973] regressions in the out-of-sample period
(2010Q3-2023Q2) using the Fama-French five-factor and momentum-adjusted buy-and-hold return
(FF6) during the 63-day window ([+2, +64]) following earnings announcement date as the dependent
variable. The CNN buy probability (CNNBP) in column 1 is generated by CNN, while the CNN+ buy
probability (CNNBP+) in columns 2 to 4 is generated by the CFO, IBCa, and OE versions of CNN+,
respectively. The control variables are standardized unexpected earnings (SUE), earnings acceleration
(EA), trend in gross profitability (TREND), market capitalization (SIZE), book-to-market ratio (BM),
past returns (RET[-30, -2]), earnings persistence (PERSIST), earnings volatility (VOL), gross
profitability (GP), operating profitability (OP), total accruals (TA), operating accruals (OA), and asset
growth (AG). All variables except for FF6 are converted into scaled ranks ranging from —0.5 to 0.5
with a mean of zero. See Appendix B for variable definitions. Time-series averages of coefficients are
multiplied by 100. Newey and West [1987] ¢-statistics with three lags are reported in parentheses. ***,
** and * indicate significance at the 1%, 5%, and 10% levels, respectively.
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Table 5.

Decomposing the Drift Predictability of CNNBP/CNNBP+: Univariate Analysis

Panel A: CNN
Candidate variables
SUE EA TREND PASTRET  PERSIST VOL SIZE BM GP OP OA TA AG
Step 1: Regress FF6 on CNNBP
Intercept 0.412 0.412 0.412 0.412 0.412 0.412 0.412 0.412 0.412 0.412 0.412 0.412 0.412
(0.907) (0.907) (0.907) (0.907) (0.907) (0.907) (0.907) (0.907) (0.907) (0.907) (0.907) (0.907) (0.907)
CNNBP 1.281** 1.281** 1.281** 1.281** 1.281** 1.281** 1.281** 1.281** 1.281** 1.281** 1.281** 1.281** 1.281**
(2.617) (2.617) (2.617) (2.617) (2.617) (2.617) (2.617) (2.617) (2.617) (2.617) (2.617) (2.617) (2.617)
Step 2: Regress CNNBP on a candidate variable
Intercept -0.280 -0.380 -0.359 -0.298 -0.357 -0.281 -0.317 -0.319 -0.317 -0.317 -0.317 -0.316 -0.317
(-1.435) (-1.191) (-1.022) (-0.855) (-1.078) (-0.904) (-0.971) (-0.977) (-0.967) (-0.970) (-0.969) (-0.969) (-0.970)
Candidate ~ 44.200%**  29.108***  16.127*** 2.420%* 5.009***  19.796***  -10.097***  15.224***  _4.061*** -10.989%**  -10.400%**  -13.293***  _]].117***
(31.333) (41.273) (11.999) (2.149) (4.561) (9.810) (-7.306) (17.067) (-2.831) (-4.876) (-10.810) (-10.151) (-10.430)
Adj. R? 19.9% 8.8% 2.9% 0.3% 0.5% 4.7% 1.3% 2.5% 0.5% 2.0% 1.3% 2.1% 1.5%
Step 3: Decompose the CNNBP coefficient from Step 1
Candidate 0.818 0.475 0.122 0.001 -0.015 0.025 0.238 0.224 -0.077 -0.14 -0.047 0.024 0.14
63.8%***  37.1%** 9.5%* 0.1% -1.2% 1.9% 18.6% 17.5% -6.0% -10.9% -3.7% 1.9% 10.9%
(2.815) (2.053) (1.719) (0.022) (-0.518) (0.122) (1.499) (1.350) (-1.029) (-1.140) (-0.532) (0.270) (1.370)
Residual 0.463 0.806 1.159 1.28 1.296 1.256 1.043 1.057 1.358 1.421 1.328 1.257 1.141
36.2% 62.9%***  90.5%***  99.9%***  101.2%***  08.1%***  81.4%%** 82.5%***  106.0%***  110.9%*** 103.7%***  98.1%***  89.1%***
(1.442) (3.236) (12.203) (31.197) (34.227) (6.345) (6.213) (6.911) (15.392) (9.854) (13.140) (11.325) (9.559)
Panel B: CNN+ (using CFO as the earnings quality measure)
Candidate variables
SUE EA TREND PASTRET  PERSIST VOL SIZE BM GP OP OA TA AG
Step 1: Regress FF6 on CNNBP+
Intercept 0.412 0.412 0.412 0.412 0.412 0.412 0.412 0.412 0.412 0.412 0.412 0.412 0.412
(0.907) (0.907) (0.907) (0.907) (0.907) (0.907) (0.907) (0.907) (0.907) (0.907) (0.907) (0.907) (0.907)
CNNBP+ 2.088%** 2.088%** 2.088%** 2.088%** 2.088%** 2.088%** 2.088%** 2.088%** 2.088%** 2.088%** 2.088%** 2.088%** 2.088%**
(3.670) (3.670) (3.670) (3.670) (3.670) (3.670) (3.670) (3.670) (3.670) (3.670) (3.670) (3.670) (3.670)
Step 2: Regress CNNBP+ on a candidate variable
Intercept -0.049 -0.106 -0.129 -0.014 -0.151 -0.034 -0.087 -0.087 -0.084 -0.088 -0.086 -0.087 -0.086
(-0.199) (-0.324) (-0.330) (-0.039) (-0.445) (-0.103) (-0.259) (-0.259) (-0.250) (-0.262) (-0.254) (-0.257) (-0.256)
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Candidate  35.983***  16.662%**  18.246%** 5.219%** 4.742%** 8.483%** 0.913 0.797 12.042%** 9.737¥%*  -13.048%**  3209%**  .5673%**
(32.186) (23.101) (12.490) (5.701) (5.944) (4.248) (0.521) (0.984) (9.032) (5.505) (-12.843) (-2.929) (-5.801)
Adj. R? 13.1% 3.0% 3.6% 0.4% 0.4% 1.4% 0.5% 0.1% 1.8% 1.4% 1.9% 0.3% 0.5%
Step 3: Decompose the CNNBP+ coefficient from Step 1
Candidate 0.655 0.295 0.123 0.008 -0.015 -0.157 -0.137 0.021 0.328 -0.108 -0.063 -0.117 0.046
31.4%%** 14.1%** 5.9%%* 0.4% -0.7% -7.5% -6.6% 1.0% 15.7%%* -5.2% -3.0% -5.6% 2.2%
(3.594) (2.496) (1.743) (0.181) (-0.458) (-1.528) (-0.838) (0.622) (2.266) (-0.590) (-0.676) (-1.127) (0.927)
Residual 1.434 1.793 1.965 2.08 2.103 2.245 2.226 2.067 1.76 2.169 2.151 2.205 2.042
68.6%***  85.9%***  94.1%***  99.6%***  100.7%***  107.5%***  106.6%*** 99.0%***  84.3%***  105.2%***  103.0%*** 105.6%***  97.8%***
(6.507) (11.609) (18.826) (27.845) (45.370) (17.916) (14.390) (43.947) (9.549) (14.332) (16.101) (23.643) (24.563)
Panel C: CNN+ (using IBCj, as the earnings quality measure)
Candidate variables
SUE EA TREND PASTRET  PERSIST VOL SIZE BM GP OP OA TA AG
Step 1: Regress FF6 on CNNBP+
Intercept 0.395 0.395 0.395 0.395 0.395 0.395 0.395 0.395 0.395 0.395 0.395 0.395 0.395
(0.899) (0.899) (0.899) (0.899) (0.899) (0.899) (0.899) (0.899) (0.899) (0.899) (0.899) (0.899) (0.899)
CNNBP+ 1.716%*** 1.716%*** 1.716%*** 1.716%** 1.716%** 1.716%** 1.716%** 1.716%** 1.716%%* 1.716%** 1.716%** 1.716%** 1.716%**
(3.311) (3.311) (3.311) (3.311) (3.311) (3.311) (3.311) (3.311) (3.311) (3.311) (3.311) (3.311) (3.311)
Step 2: Regress CNNBP+ on a candidate variable
Intercept -0.246 -0.324 -0.348 -0.267 -0.331 -0.220 -0.275 -0.276 -0.273 -0.275 -0.273 -0.274 -0.274
(-0.954) (-0.865) (-0.844) (-0.649) (-0.845) (-0.621) (-0.711) (-0.715) (-0.707) (-0.712) (-0.708) (-0.710) (-0.711)
Candidate =~ 35.352%%*  2(0.593***  15.909*** 2.812%* 5.528***  25.667***  -8.660*** 6.654%** 3.140%** -2.923 -14.070***  -9.966***  -8.407***
(23.102) (26.074) (9.656) (2.499) (6.987) (10.858) (-5.740) (6.460) (2.573) (-1.423) (-10.762) (-6.832) (-8.618)
Adj. R? 12.9% 4.6% 2.9% 0.3% 0.5% 7.5% 1.1% 0.6% 0.3% 0.7% 2.3% 1.3% 0.9%
Step 3: Decompose the CNNBP+ coefficient from Step 1
Candidate 0.626 0.347 0.104 0.001 0.001 -0.028 0.195 0.162 0.102 -0.12 -0.051 -0.022 0.103
36.5%***  20.2%** 6.1% 0.1% 0.1% -1.6% 11.3%* 9.4% 5.9% -7.0% -2.9% -1.3% 6.0%
(3.332) (2.462) (1.617) (0.034) (0.030) (-0.109) (1.866) (1.645) (1.398) (-1.427) (-0.445) (-0.348) (1.560)
Residual 1.09 1.368 1.612 1.714 1.715 1.743 1.521 1.554 1.614 1.836 1.766 1.737 1.613
63.5%***  79.8%***  93.9%***  99.9%***  99.9%***  101.6%***  88.7%*** 90.6%***  94.1%***  107.0%***  102.9%*** 101.3%***  94.0%***
(5.112) (7.964) (19.772) (32.517) (30.012) (6.026) (9.834) (13.253) (17.782) (18.189) (13.682) (17.763) (13.944)
Panel D: CNN+ (using OE as the earnings quality measure)
Candidate variables
SUE EA TREND PASTRET  PERSIST VOL SIZE BM GP OP OA TA AG
Step 1: Regress FF6 on CNNBP+
Intercept 0.394 0.394 0.394 0.394 0.394 0.394 0.394 0.394 0.394 0.394 0.394 0.394 0.394
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(0.894) (0.894) (0.894) (0.894) (0.894) (0.894) (0.894) (0.894) (0.894) (0.894) (0.894) (0.894) (0.894)
CNNBP+ 1.760%** 1.760%** 1.760%** 1.760%** 1.760%** 1.760%** 1.760%** 1.760%** 1.760%** 1.760%** 1.760%** 1.760%** 1.760%**
(3.905) (3.905) (3.905) (3.905) (3.905) (3.905) (3.905) (3.905) (3.905) (3.905) (3.905) (3.905) (3.905)
Step 2: Regress CNNBP+ on a candidate variable
Intercept -0.211 -0.295 -0.307 -0.279 -0.298 -0.200 -0.251 -0.253 -0.251 -0.252 -0.250 -0.251 -0.251
(-0.828) (-0.781) (-0.756) (-0.682) (-0.763) (-0.571) (-0.653) (-0.657) (-0.650) (-0.654) (-0.650) (-0.651) (-0.652)
Candidate  36.416%**  20.014%**  18.358%** 3.105%** 5.343%*%*  25192%*%*  _]10.173%** 6.771%%* 3.750%** -4.089**  -16.517***  -11.235%**  _8.986***
(25.742) (29.071) (11.416) (2.916) (6.043) (10.532) (-6.675) (6.998) (2.948) (-2.139) (-11.110) (-7.6006) (-9.151)
Adj. R? 13.4% 4.2% 3.7% 0.3% 0.5% 7.3% 1.4% 0.6% 0.4% 0.7% 3.1% 1.6% 1.0%
Step 3: Decompose the CNNBP+ coefficient from Step 1
Candidate 0.656 0.339 0.134 -0.013 -0.006 -0.009 0.224 0.164 0.127 -0.105 -0.058 0.004 0.099
37.3%%** 19.3%** 7.6%* -0.7% -0.3% -0.5% 12.7%* 9.3%%* 7.2%* -6.0% -3.3% 0.3% 5.6%
(3.563) (2.583) (1.944) (-0.295) (-0.178) (-0.040) (1.880) (1.856) (1.738) (-1.247) (-0.444) (0.064) (1.470)
Residual 1.104 1.421 1.626 1.773 1.766 1.77 1.536 1.596 1.633 1.865 1.818 1.756 1.661
62.7%***  80.7%***  92.4%***  100.7%***  100.3%***  100.5%***  87.3%%** 90.7%***  92.8%***  106.0%***  103.3%***  99.7%*** 04 4%***
(5.344) (9.684) (16.390) (34.286) (26.433) (7.104) (10.217) (12.660) (17.547) (15.949) (12.617) (16.898) (15.260)

Using Fama-MacBeth [1973] cross-sectional regressions, the relation between CNNBP (or CNNBP+) and the post-announcement 63-day Fama-French five-
factor and momentum-adjusted buy-and-hold returns (FF6) is decomposed into a component that is related to a candidate variable and a residual component. In
Panel A, Step 1 regresses FF6 on CNNBP (i.e., FF6; 4.1 = ag + BgCNNBP; ; + €; 411). Step 2 regresses CNNBP on a candidate variable (i.e., CNNBP; , =

aq + 64Candidate; 4 + u; 4) to decompose CNNBP; , into two orthogonal components: the candidate component (§,Candidate; ;) and the residual component

Cov[FF6i,q+1.(0!q +Ili.q)]
Var(CNNBP; 4)

Cov[FF6;441,CNNBP; 4] CovV[FF6;4.1,64Candidate; 4]

(ag + igq)- Step 3 decomposes the S, coefficient from Step 1 as: f,; = Var(CNNBPL) Var(CNNBPL)

= Bq +Bq-

The time-series average of ,Bg divided by the time-series average of f; measures the fraction of the CNNBP’s drift predictability explained by the candidate
variable and the time-series average of ,85 divided by the time-series average of 5, measures the fraction of the CNNBP’s drift predictability unexplained by
the candidate variable, with the standard errors of the fractions being determined using the multivariate delta method. In Panels B to D, we replace CNNBP
with CNNBP+ generated by the CFO, IBCa, and OE versions of the CNN+ model, respectively, and perform the Steps 1 to 3 in an analogous manner. The
candidate variables include standardized unexpected earnings (SUE), earnings acceleration (EA), trend in gross profitability (TREND), market capitalization
(SIZE), book-to-market ratio (BM), past returns (RET[-30, -2]), earnings persistence (PERSIST), earnings volatility (VOL), gross profitability (GP), operating
profitability (OP), total accruals (TA), operating accruals (OA), and asset growth (AG). All variables except for FF6 are converted into scaled ranks ranging
from —0.5 to 0.5 with a mean of zero. See Appendix B for variable definitions. Time-series averages of coefficients are multiplied by 100 and reported with t-

statistics in parentheses. ***, ** and * indicate significance at the 1%, 5%, and 10% level, respectively.
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Decomposing the Drift Predictability of CNNBP/CNNBP+: Multivariate Analysis

Table 6:

CNN CNN+ (using CFO as the earnings CNN+ (using IBCy as the earnings CNN+ (using OE as the earnings
quality measure) quality measure) quality measure)
Coeff. Fraction t-stat Coeff. Fraction t-stat Coeff. Fraction t-stat Coeff. Fraction t-stat
Step 1: Regress FF6 on CNNBP (or CNNBP+)
Intercept 0.412 (0.907) 0.412 (0.907) 0.395 (0.899) 0.394 (0.894)
CNNBP 1.281%** (2.617)
CNNBP+ 2.088%** (3.670) 1.716%** (3.311) 1.760%** (3.905)
Step 2: Regression CNNBP/CNNBP+ on candidate variables
Intercept -0.313% (-1.686) -0.037 (-0.137) -0.281 (-1.167) -0.256 (-1.082)
SUE 39.904*** (33.860)  32.771%*** (37.964) 32.520%** (26.375) 33.385%** (27.930)
EA 11.419%** (14.648) 2.408%** (3.312) 6.418%** (7.600) 5.464%** (7.134)
TREND 3.296%** (4.727)  10.861*** (12.907) 6.657*%* (8.611) 8.739%** (10.731)
PASTRET 0.971 (1.614) 1.910%** (5.137) 1.258** (2.457) 1.453%%* (2.839)
PERSIST 6.199%** (6.903) 5.060%*** (9.413) 6.396%** (10.157) 6.022%%* (9.471)
VOL 24.780%** (16.766)  15.116%** (10.391) 31.176%** (18.492) 29.333%** (16.226)
SIZE 3.475%** (2.849) 2.628* (1.911) 2.141%* (1.844) 0.456 (0.369)
BM 20.550%** (22.906)  10.940%*** (11.308) 14.546%** (17.422) 14.295%** (15.732)
GP 1.824 (1.407) 8.162%** (6.536) 3.777x** (3.259) 4.893%** (3.483)
(0 2.493%* (2.491)  15.185%** (17.377) 9.821%** (10.380) 8.643%** (11.384)
OA -2.850%** (-4.744)  -9.911%** (-18.425) -6.731*** (-8.666) -9.365%** (-9.250)
TA -4 881*** (-10.087) 1.195 (1.557) -1.683%* (-2.180) -1.218% (-1.764)
AG -1.996** (-2.481)  -3.522%*x* (-4.362) -2.538%** (-3.209) -2.336%** (-3.986)
Adj. R? 32.5% 21.5% 26.4% 27.2%
Step 3: Decompose the CNNBP/CNNBP+ coefficient from Step 1
SUE 0.756 59.1%*** (2.817) 0.598 28.6%*** (3.575) 0.592 34.5%*** (3.337) 0.617 35.1%*** (3.524)
EA 0.183 14.3%* (1.952) 0.063 3.0% (1.656) 0.117 6.8%** (2.009) 0.097 5.5%%* (1.922)
TREND 0.029 2.2% (1.413) 0.064 3.1% (1.385) 0.035 2.1% (1.095) 0.061 3.5%* (1.676)
PASTRET —-0.017 -1.3% (-0.587)  —0.008 —0.4% (-0.325) —0.018 -1.1% (-0.637) —-0.027 -1.5% (—0.981)
PERSIST —0.031 —2.4% (-0.848)  —0.022 -1.1% (-0.650) —0.015 —0.9% (-0.441) —0.020 -1.2% (—0.596)
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VOL -0.021 ~1.7% (-0.089)  —0.154 ~7.4% (-1.383)  —0.044 ~2.6% (-0.144)  —0.030 ~1.7% (~0.109)
SIZE —0.148  —11.5% (-1.176)  —0.113 ~5.4% (-0.842)  —0.083 ~4.9% (-1.050)  —0.062 -3.5% (~0.928)
BM 0.296 23.1% (1274)  0.156 7.5% (1.081) 0.248 14.5% (1.449) 0.244 13.9% (1.477)
GP 0.083 6.5% (1489) 0261 12.5%**  (2.568) 0.131 7.7%%* (1.980) 0.162 9.2%**  (2.077)
oP ~0.041 ~3.2% (-0.805)  —0.005 —0.2% (-0.029)  —0.017 ~1.0% (-0.160)  —0.020 ~1.2% (~0.244)
OA ~0.062 ~4.8% (-1.235)  —0.027 ~1.3% (-0.301)  —0.025 ~1.5% (-0.380)  —0.049 ~2.8% (~0.582)
TA 0.034 2.6% (0.839)  —0.035 ~1.7% (-0.639)  —0.018 ~1.1% (~0.484) 0.009 0.5% (0.435)
AG 0.033 2.5% (0.745)  0.045 2.2% (1.136) 0.042 2.5% (1.239) 0.041 2.3% (1.506)
Residual 0.187 14.6% (0.407) 1266 60.6%***  (4.820) 0.771 44.9%**%  (2.983) 0.736 41.8%**  (2.399)
Total 1.281%%%  100.0% (2.617)  2.088%** 100.0% (3.670) 1.716%%*  100.0% (3.311) 1.760%**  100.0% (3.905)

Using Fama-Macbeth [1973] cross-sectional regressions, the relation between CNNBP (or CNNBP+) and the post-announcement 63-day Fama-
French five-factor and momentum-adjusted buy-and-hold returns (FF6) is decomposed into 13 components each related to a candidate variable
and a residual component. The standard errors of the fractions of the relation explained are determined using the multivariate delta method. The
13 candidate variables are standardized unexpected earnings (SUE), earnings acceleration (EA), trend in gross profitability (TREND), market
capitalization (SIZE), book-to-market ratio (BM), past returns (RET[—30, —2]), earnings persistence (PERSIST), earnings volatility (VOL), gross
profitability (GP), operating profitability (OP), total accruals (TA), operating accruals (OA), and asset growth (AG). All variables except for FF6
are converted into scaled ranks ranging from —0.5 to 0.5 with a mean of zero. See Appendix B for variable definitions. Time-series averages of

coefficients are multiplied by 100 and reported with t-statistics in parentheses. ***, ** and * indicate significance at the 1%, 5%, and 10% levels,

respectively.
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